File size: 26,609 Bytes
4e0c761 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
2024-03-26 09:27:01,310 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Train: 758 sentences
2024-03-26 09:27:01,311 (train_with_dev=False, train_with_test=False)
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Training Params:
2024-03-26 09:27:01,311 - learning_rate: "3e-05"
2024-03-26 09:27:01,311 - mini_batch_size: "16"
2024-03-26 09:27:01,311 - max_epochs: "10"
2024-03-26 09:27:01,311 - shuffle: "True"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Plugins:
2024-03-26 09:27:01,311 - TensorboardLogger
2024-03-26 09:27:01,311 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:27:01,311 - metric: "('micro avg', 'f1-score')"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Computation:
2024-03-26 09:27:01,311 - compute on device: cuda:0
2024-03-26 09:27:01,311 - embedding storage: none
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr3e-05-1"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:27:03,347 epoch 1 - iter 4/48 - loss 3.13979079 - time (sec): 2.04 - samples/sec: 1333.70 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:27:04,595 epoch 1 - iter 8/48 - loss 3.07798066 - time (sec): 3.28 - samples/sec: 1641.38 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:27:07,585 epoch 1 - iter 12/48 - loss 2.97060594 - time (sec): 6.27 - samples/sec: 1387.12 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:27:10,667 epoch 1 - iter 16/48 - loss 2.84417408 - time (sec): 9.36 - samples/sec: 1303.32 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:27:13,058 epoch 1 - iter 20/48 - loss 2.69619801 - time (sec): 11.75 - samples/sec: 1309.52 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:27:14,710 epoch 1 - iter 24/48 - loss 2.56981828 - time (sec): 13.40 - samples/sec: 1361.09 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:27:16,246 epoch 1 - iter 28/48 - loss 2.46547501 - time (sec): 14.93 - samples/sec: 1386.12 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:27:18,263 epoch 1 - iter 32/48 - loss 2.38026327 - time (sec): 16.95 - samples/sec: 1394.34 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:27:19,211 epoch 1 - iter 36/48 - loss 2.31027246 - time (sec): 17.90 - samples/sec: 1455.28 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:27:21,097 epoch 1 - iter 40/48 - loss 2.22806839 - time (sec): 19.79 - samples/sec: 1471.58 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:27:23,034 epoch 1 - iter 44/48 - loss 2.14894110 - time (sec): 21.72 - samples/sec: 1458.43 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:24,473 epoch 1 - iter 48/48 - loss 2.06114686 - time (sec): 23.16 - samples/sec: 1488.32 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:24,473 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:24,473 EPOCH 1 done: loss 2.0611 - lr: 0.000029
2024-03-26 09:27:25,252 DEV : loss 0.7669001817703247 - f1-score (micro avg) 0.4977
2024-03-26 09:27:25,253 saving best model
2024-03-26 09:27:25,535 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:27,913 epoch 2 - iter 4/48 - loss 0.98267064 - time (sec): 2.38 - samples/sec: 1304.60 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:27:29,885 epoch 2 - iter 8/48 - loss 0.93150894 - time (sec): 4.35 - samples/sec: 1520.10 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:27:32,046 epoch 2 - iter 12/48 - loss 0.87529358 - time (sec): 6.51 - samples/sec: 1422.15 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:34,007 epoch 2 - iter 16/48 - loss 0.83035092 - time (sec): 8.47 - samples/sec: 1406.57 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:36,039 epoch 2 - iter 20/48 - loss 0.78760978 - time (sec): 10.50 - samples/sec: 1427.73 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:39,079 epoch 2 - iter 24/48 - loss 0.72756319 - time (sec): 13.54 - samples/sec: 1366.20 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:41,351 epoch 2 - iter 28/48 - loss 0.70243644 - time (sec): 15.82 - samples/sec: 1362.01 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:43,002 epoch 2 - iter 32/48 - loss 0.67807443 - time (sec): 17.47 - samples/sec: 1381.36 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:43,988 epoch 2 - iter 36/48 - loss 0.66044671 - time (sec): 18.45 - samples/sec: 1433.59 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:45,779 epoch 2 - iter 40/48 - loss 0.64116783 - time (sec): 20.24 - samples/sec: 1452.19 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:47,724 epoch 2 - iter 44/48 - loss 0.62573228 - time (sec): 22.19 - samples/sec: 1447.07 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:49,127 epoch 2 - iter 48/48 - loss 0.61188841 - time (sec): 23.59 - samples/sec: 1461.18 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:49,128 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:49,128 EPOCH 2 done: loss 0.6119 - lr: 0.000027
2024-03-26 09:27:50,059 DEV : loss 0.3239489793777466 - f1-score (micro avg) 0.7699
2024-03-26 09:27:50,060 saving best model
2024-03-26 09:27:50,511 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:52,924 epoch 3 - iter 4/48 - loss 0.42826350 - time (sec): 2.41 - samples/sec: 1265.71 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:27:54,703 epoch 3 - iter 8/48 - loss 0.38023174 - time (sec): 4.19 - samples/sec: 1400.36 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:27:56,459 epoch 3 - iter 12/48 - loss 0.38279022 - time (sec): 5.95 - samples/sec: 1477.77 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:27:58,856 epoch 3 - iter 16/48 - loss 0.35668301 - time (sec): 8.34 - samples/sec: 1463.88 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:28:00,266 epoch 3 - iter 20/48 - loss 0.36344288 - time (sec): 9.75 - samples/sec: 1517.17 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:03,119 epoch 3 - iter 24/48 - loss 0.34539125 - time (sec): 12.61 - samples/sec: 1500.12 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:03,860 epoch 3 - iter 28/48 - loss 0.33533201 - time (sec): 13.35 - samples/sec: 1576.47 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:06,336 epoch 3 - iter 32/48 - loss 0.32173533 - time (sec): 15.82 - samples/sec: 1518.36 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:08,290 epoch 3 - iter 36/48 - loss 0.31315603 - time (sec): 17.78 - samples/sec: 1510.87 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:28:10,135 epoch 3 - iter 40/48 - loss 0.31183643 - time (sec): 19.62 - samples/sec: 1499.51 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:28:12,217 epoch 3 - iter 44/48 - loss 0.30012530 - time (sec): 21.70 - samples/sec: 1502.79 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:28:13,416 epoch 3 - iter 48/48 - loss 0.29678680 - time (sec): 22.90 - samples/sec: 1505.13 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:13,416 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:13,416 EPOCH 3 done: loss 0.2968 - lr: 0.000023
2024-03-26 09:28:14,287 DEV : loss 0.26448285579681396 - f1-score (micro avg) 0.8403
2024-03-26 09:28:14,288 saving best model
2024-03-26 09:28:14,759 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:16,204 epoch 4 - iter 4/48 - loss 0.26363306 - time (sec): 1.44 - samples/sec: 1890.48 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:18,545 epoch 4 - iter 8/48 - loss 0.23484258 - time (sec): 3.78 - samples/sec: 1516.61 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:20,589 epoch 4 - iter 12/48 - loss 0.23169066 - time (sec): 5.83 - samples/sec: 1499.47 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:22,699 epoch 4 - iter 16/48 - loss 0.20987272 - time (sec): 7.94 - samples/sec: 1508.53 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:25,648 epoch 4 - iter 20/48 - loss 0.19941139 - time (sec): 10.89 - samples/sec: 1422.78 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:27,042 epoch 4 - iter 24/48 - loss 0.19827921 - time (sec): 12.28 - samples/sec: 1467.58 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:28,520 epoch 4 - iter 28/48 - loss 0.19424885 - time (sec): 13.76 - samples/sec: 1507.39 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:30,929 epoch 4 - iter 32/48 - loss 0.20143061 - time (sec): 16.17 - samples/sec: 1499.19 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:28:31,889 epoch 4 - iter 36/48 - loss 0.20123336 - time (sec): 17.13 - samples/sec: 1551.30 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:28:34,211 epoch 4 - iter 40/48 - loss 0.19568585 - time (sec): 19.45 - samples/sec: 1501.59 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:28:35,958 epoch 4 - iter 44/48 - loss 0.19592911 - time (sec): 21.20 - samples/sec: 1522.21 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:37,276 epoch 4 - iter 48/48 - loss 0.19413849 - time (sec): 22.51 - samples/sec: 1531.11 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:37,276 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:37,276 EPOCH 4 done: loss 0.1941 - lr: 0.000020
2024-03-26 09:28:38,202 DEV : loss 0.20181307196617126 - f1-score (micro avg) 0.8661
2024-03-26 09:28:38,205 saving best model
2024-03-26 09:28:38,648 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:40,513 epoch 5 - iter 4/48 - loss 0.18286346 - time (sec): 1.86 - samples/sec: 1496.88 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:42,881 epoch 5 - iter 8/48 - loss 0.15386085 - time (sec): 4.23 - samples/sec: 1403.07 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:44,784 epoch 5 - iter 12/48 - loss 0.15581086 - time (sec): 6.13 - samples/sec: 1396.58 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:28:46,735 epoch 5 - iter 16/48 - loss 0.15172544 - time (sec): 8.09 - samples/sec: 1428.78 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:28:48,592 epoch 5 - iter 20/48 - loss 0.15213150 - time (sec): 9.94 - samples/sec: 1439.35 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:28:50,059 epoch 5 - iter 24/48 - loss 0.15722917 - time (sec): 11.41 - samples/sec: 1490.75 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:52,196 epoch 5 - iter 28/48 - loss 0.15699606 - time (sec): 13.55 - samples/sec: 1487.07 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:54,740 epoch 5 - iter 32/48 - loss 0.15384884 - time (sec): 16.09 - samples/sec: 1471.23 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:57,055 epoch 5 - iter 36/48 - loss 0.14632635 - time (sec): 18.41 - samples/sec: 1474.42 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:57,924 epoch 5 - iter 40/48 - loss 0.14743954 - time (sec): 19.27 - samples/sec: 1518.00 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:00,487 epoch 5 - iter 44/48 - loss 0.14301882 - time (sec): 21.84 - samples/sec: 1482.96 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:01,928 epoch 5 - iter 48/48 - loss 0.14207733 - time (sec): 23.28 - samples/sec: 1480.88 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:01,928 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:01,928 EPOCH 5 done: loss 0.1421 - lr: 0.000017
2024-03-26 09:29:02,798 DEV : loss 0.1995552033185959 - f1-score (micro avg) 0.8842
2024-03-26 09:29:02,799 saving best model
2024-03-26 09:29:03,271 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:05,224 epoch 6 - iter 4/48 - loss 0.08497267 - time (sec): 1.95 - samples/sec: 1354.85 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:07,333 epoch 6 - iter 8/48 - loss 0.11241659 - time (sec): 4.06 - samples/sec: 1362.26 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:29:09,110 epoch 6 - iter 12/48 - loss 0.11714498 - time (sec): 5.84 - samples/sec: 1480.36 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:29:11,290 epoch 6 - iter 16/48 - loss 0.11620269 - time (sec): 8.02 - samples/sec: 1433.00 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:29:13,011 epoch 6 - iter 20/48 - loss 0.11740035 - time (sec): 9.74 - samples/sec: 1440.89 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:15,416 epoch 6 - iter 24/48 - loss 0.11484259 - time (sec): 12.14 - samples/sec: 1417.97 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:17,210 epoch 6 - iter 28/48 - loss 0.11528236 - time (sec): 13.94 - samples/sec: 1419.07 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:19,622 epoch 6 - iter 32/48 - loss 0.11521092 - time (sec): 16.35 - samples/sec: 1398.04 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:22,955 epoch 6 - iter 36/48 - loss 0.11033813 - time (sec): 19.68 - samples/sec: 1354.87 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:24,519 epoch 6 - iter 40/48 - loss 0.10826951 - time (sec): 21.25 - samples/sec: 1390.87 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:26,292 epoch 6 - iter 44/48 - loss 0.10638058 - time (sec): 23.02 - samples/sec: 1395.11 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:27,541 epoch 6 - iter 48/48 - loss 0.10980662 - time (sec): 24.27 - samples/sec: 1420.44 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:27,541 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:27,541 EPOCH 6 done: loss 0.1098 - lr: 0.000014
2024-03-26 09:29:28,421 DEV : loss 0.190290629863739 - f1-score (micro avg) 0.89
2024-03-26 09:29:28,422 saving best model
2024-03-26 09:29:28,868 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:30,475 epoch 7 - iter 4/48 - loss 0.13132601 - time (sec): 1.60 - samples/sec: 1712.33 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:29:32,500 epoch 7 - iter 8/48 - loss 0.10894840 - time (sec): 3.63 - samples/sec: 1481.78 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:29:34,756 epoch 7 - iter 12/48 - loss 0.11116772 - time (sec): 5.89 - samples/sec: 1410.62 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:29:37,286 epoch 7 - iter 16/48 - loss 0.10061780 - time (sec): 8.42 - samples/sec: 1371.43 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:39,521 epoch 7 - iter 20/48 - loss 0.10057925 - time (sec): 10.65 - samples/sec: 1372.26 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:40,854 epoch 7 - iter 24/48 - loss 0.09594952 - time (sec): 11.98 - samples/sec: 1427.56 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:42,237 epoch 7 - iter 28/48 - loss 0.09355689 - time (sec): 13.37 - samples/sec: 1492.28 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:44,188 epoch 7 - iter 32/48 - loss 0.08991898 - time (sec): 15.32 - samples/sec: 1480.72 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:29:46,307 epoch 7 - iter 36/48 - loss 0.08734474 - time (sec): 17.44 - samples/sec: 1468.87 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:29:48,727 epoch 7 - iter 40/48 - loss 0.08720038 - time (sec): 19.86 - samples/sec: 1447.45 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:29:50,527 epoch 7 - iter 44/48 - loss 0.08727137 - time (sec): 21.66 - samples/sec: 1463.81 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:52,412 epoch 7 - iter 48/48 - loss 0.08649088 - time (sec): 23.54 - samples/sec: 1464.31 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:52,412 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:52,412 EPOCH 7 done: loss 0.0865 - lr: 0.000010
2024-03-26 09:29:53,341 DEV : loss 0.17982175946235657 - f1-score (micro avg) 0.9045
2024-03-26 09:29:53,343 saving best model
2024-03-26 09:29:53,800 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:55,741 epoch 8 - iter 4/48 - loss 0.09321231 - time (sec): 1.94 - samples/sec: 1393.95 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:58,488 epoch 8 - iter 8/48 - loss 0.07249940 - time (sec): 4.69 - samples/sec: 1185.45 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:59,746 epoch 8 - iter 12/48 - loss 0.07664782 - time (sec): 5.94 - samples/sec: 1342.92 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:02,133 epoch 8 - iter 16/48 - loss 0.08386172 - time (sec): 8.33 - samples/sec: 1351.18 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:04,610 epoch 8 - iter 20/48 - loss 0.07359994 - time (sec): 10.81 - samples/sec: 1394.07 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:05,883 epoch 8 - iter 24/48 - loss 0.07537128 - time (sec): 12.08 - samples/sec: 1473.14 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:09,106 epoch 8 - iter 28/48 - loss 0.07450515 - time (sec): 15.30 - samples/sec: 1425.76 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:30:11,077 epoch 8 - iter 32/48 - loss 0.07698629 - time (sec): 17.28 - samples/sec: 1427.11 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:30:12,123 epoch 8 - iter 36/48 - loss 0.07680939 - time (sec): 18.32 - samples/sec: 1465.62 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:30:13,773 epoch 8 - iter 40/48 - loss 0.07577223 - time (sec): 19.97 - samples/sec: 1463.42 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:15,328 epoch 8 - iter 44/48 - loss 0.07498246 - time (sec): 21.53 - samples/sec: 1484.35 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:17,249 epoch 8 - iter 48/48 - loss 0.07557714 - time (sec): 23.45 - samples/sec: 1470.17 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:17,249 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:17,249 EPOCH 8 done: loss 0.0756 - lr: 0.000007
2024-03-26 09:30:18,149 DEV : loss 0.17024415731430054 - f1-score (micro avg) 0.918
2024-03-26 09:30:18,151 saving best model
2024-03-26 09:30:18,606 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:20,426 epoch 9 - iter 4/48 - loss 0.05767140 - time (sec): 1.82 - samples/sec: 1473.96 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:23,553 epoch 9 - iter 8/48 - loss 0.04154401 - time (sec): 4.94 - samples/sec: 1262.98 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:25,189 epoch 9 - iter 12/48 - loss 0.05035534 - time (sec): 6.58 - samples/sec: 1320.70 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:27,408 epoch 9 - iter 16/48 - loss 0.05450684 - time (sec): 8.80 - samples/sec: 1309.29 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:29,653 epoch 9 - iter 20/48 - loss 0.05915286 - time (sec): 11.04 - samples/sec: 1339.63 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:31,806 epoch 9 - iter 24/48 - loss 0.06294200 - time (sec): 13.20 - samples/sec: 1355.11 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:30:34,148 epoch 9 - iter 28/48 - loss 0.06112591 - time (sec): 15.54 - samples/sec: 1348.70 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:30:36,453 epoch 9 - iter 32/48 - loss 0.06079575 - time (sec): 17.84 - samples/sec: 1345.68 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:30:38,226 epoch 9 - iter 36/48 - loss 0.06342821 - time (sec): 19.62 - samples/sec: 1364.71 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:40,379 epoch 9 - iter 40/48 - loss 0.06494860 - time (sec): 21.77 - samples/sec: 1354.37 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:42,484 epoch 9 - iter 44/48 - loss 0.06451464 - time (sec): 23.88 - samples/sec: 1365.50 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:43,220 epoch 9 - iter 48/48 - loss 0.06516833 - time (sec): 24.61 - samples/sec: 1400.60 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:43,221 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:43,221 EPOCH 9 done: loss 0.0652 - lr: 0.000004
2024-03-26 09:30:44,109 DEV : loss 0.16860732436180115 - f1-score (micro avg) 0.9142
2024-03-26 09:30:44,110 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:45,829 epoch 10 - iter 4/48 - loss 0.04146833 - time (sec): 1.72 - samples/sec: 1529.39 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:30:47,751 epoch 10 - iter 8/48 - loss 0.04228870 - time (sec): 3.64 - samples/sec: 1521.79 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:30:50,430 epoch 10 - iter 12/48 - loss 0.04638348 - time (sec): 6.32 - samples/sec: 1380.80 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:30:52,334 epoch 10 - iter 16/48 - loss 0.05569483 - time (sec): 8.22 - samples/sec: 1395.05 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:54,151 epoch 10 - iter 20/48 - loss 0.05880033 - time (sec): 10.04 - samples/sec: 1440.66 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:55,784 epoch 10 - iter 24/48 - loss 0.06605991 - time (sec): 11.67 - samples/sec: 1452.74 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:57,517 epoch 10 - iter 28/48 - loss 0.06374936 - time (sec): 13.41 - samples/sec: 1475.79 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:58,700 epoch 10 - iter 32/48 - loss 0.06224483 - time (sec): 14.59 - samples/sec: 1509.54 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:01,656 epoch 10 - iter 36/48 - loss 0.05697960 - time (sec): 17.55 - samples/sec: 1459.85 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:04,421 epoch 10 - iter 40/48 - loss 0.06062508 - time (sec): 20.31 - samples/sec: 1431.81 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:07,187 epoch 10 - iter 44/48 - loss 0.05774779 - time (sec): 23.08 - samples/sec: 1398.91 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:08,778 epoch 10 - iter 48/48 - loss 0.05640631 - time (sec): 24.67 - samples/sec: 1397.47 - lr: 0.000000 - momentum: 0.000000
2024-03-26 09:31:08,778 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:08,778 EPOCH 10 done: loss 0.0564 - lr: 0.000000
2024-03-26 09:31:09,670 DEV : loss 0.16845521330833435 - f1-score (micro avg) 0.9144
2024-03-26 09:31:09,951 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:09,951 Loading model from best epoch ...
2024-03-26 09:31:10,857 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:31:11,602
Results:
- F-score (micro) 0.8904
- F-score (macro) 0.6781
- Accuracy 0.808
By class:
precision recall f1-score support
Unternehmen 0.8927 0.8759 0.8843 266
Auslagerung 0.8333 0.8835 0.8577 249
Ort 0.9565 0.9851 0.9706 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.8797 0.9014 0.8904 649
macro avg 0.6706 0.6861 0.6781 649
weighted avg 0.8831 0.9014 0.8919 649
2024-03-26 09:31:11,602 ----------------------------------------------------------------------------------------------------
|