File size: 26,609 Bytes
4e0c761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
2024-03-26 09:27:01,310 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(31103, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Train:  758 sentences
2024-03-26 09:27:01,311         (train_with_dev=False, train_with_test=False)
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Training Params:
2024-03-26 09:27:01,311  - learning_rate: "3e-05" 
2024-03-26 09:27:01,311  - mini_batch_size: "16"
2024-03-26 09:27:01,311  - max_epochs: "10"
2024-03-26 09:27:01,311  - shuffle: "True"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Plugins:
2024-03-26 09:27:01,311  - TensorboardLogger
2024-03-26 09:27:01,311  - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 09:27:01,311  - metric: "('micro avg', 'f1-score')"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Computation:
2024-03-26 09:27:01,311  - compute on device: cuda:0
2024-03-26 09:27:01,311  - embedding storage: none
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Model training base path: "flair-co-funer-gbert_base-bs16-e10-lr3e-05-1"
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:01,311 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 09:27:03,347 epoch 1 - iter 4/48 - loss 3.13979079 - time (sec): 2.04 - samples/sec: 1333.70 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:27:04,595 epoch 1 - iter 8/48 - loss 3.07798066 - time (sec): 3.28 - samples/sec: 1641.38 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:27:07,585 epoch 1 - iter 12/48 - loss 2.97060594 - time (sec): 6.27 - samples/sec: 1387.12 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:27:10,667 epoch 1 - iter 16/48 - loss 2.84417408 - time (sec): 9.36 - samples/sec: 1303.32 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:27:13,058 epoch 1 - iter 20/48 - loss 2.69619801 - time (sec): 11.75 - samples/sec: 1309.52 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:27:14,710 epoch 1 - iter 24/48 - loss 2.56981828 - time (sec): 13.40 - samples/sec: 1361.09 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:27:16,246 epoch 1 - iter 28/48 - loss 2.46547501 - time (sec): 14.93 - samples/sec: 1386.12 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:27:18,263 epoch 1 - iter 32/48 - loss 2.38026327 - time (sec): 16.95 - samples/sec: 1394.34 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:27:19,211 epoch 1 - iter 36/48 - loss 2.31027246 - time (sec): 17.90 - samples/sec: 1455.28 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:27:21,097 epoch 1 - iter 40/48 - loss 2.22806839 - time (sec): 19.79 - samples/sec: 1471.58 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:27:23,034 epoch 1 - iter 44/48 - loss 2.14894110 - time (sec): 21.72 - samples/sec: 1458.43 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:24,473 epoch 1 - iter 48/48 - loss 2.06114686 - time (sec): 23.16 - samples/sec: 1488.32 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:24,473 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:24,473 EPOCH 1 done: loss 2.0611 - lr: 0.000029
2024-03-26 09:27:25,252 DEV : loss 0.7669001817703247 - f1-score (micro avg)  0.4977
2024-03-26 09:27:25,253 saving best model
2024-03-26 09:27:25,535 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:27,913 epoch 2 - iter 4/48 - loss 0.98267064 - time (sec): 2.38 - samples/sec: 1304.60 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:27:29,885 epoch 2 - iter 8/48 - loss 0.93150894 - time (sec): 4.35 - samples/sec: 1520.10 - lr: 0.000030 - momentum: 0.000000
2024-03-26 09:27:32,046 epoch 2 - iter 12/48 - loss 0.87529358 - time (sec): 6.51 - samples/sec: 1422.15 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:34,007 epoch 2 - iter 16/48 - loss 0.83035092 - time (sec): 8.47 - samples/sec: 1406.57 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:36,039 epoch 2 - iter 20/48 - loss 0.78760978 - time (sec): 10.50 - samples/sec: 1427.73 - lr: 0.000029 - momentum: 0.000000
2024-03-26 09:27:39,079 epoch 2 - iter 24/48 - loss 0.72756319 - time (sec): 13.54 - samples/sec: 1366.20 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:41,351 epoch 2 - iter 28/48 - loss 0.70243644 - time (sec): 15.82 - samples/sec: 1362.01 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:43,002 epoch 2 - iter 32/48 - loss 0.67807443 - time (sec): 17.47 - samples/sec: 1381.36 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:43,988 epoch 2 - iter 36/48 - loss 0.66044671 - time (sec): 18.45 - samples/sec: 1433.59 - lr: 0.000028 - momentum: 0.000000
2024-03-26 09:27:45,779 epoch 2 - iter 40/48 - loss 0.64116783 - time (sec): 20.24 - samples/sec: 1452.19 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:47,724 epoch 2 - iter 44/48 - loss 0.62573228 - time (sec): 22.19 - samples/sec: 1447.07 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:49,127 epoch 2 - iter 48/48 - loss 0.61188841 - time (sec): 23.59 - samples/sec: 1461.18 - lr: 0.000027 - momentum: 0.000000
2024-03-26 09:27:49,128 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:49,128 EPOCH 2 done: loss 0.6119 - lr: 0.000027
2024-03-26 09:27:50,059 DEV : loss 0.3239489793777466 - f1-score (micro avg)  0.7699
2024-03-26 09:27:50,060 saving best model
2024-03-26 09:27:50,511 ----------------------------------------------------------------------------------------------------
2024-03-26 09:27:52,924 epoch 3 - iter 4/48 - loss 0.42826350 - time (sec): 2.41 - samples/sec: 1265.71 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:27:54,703 epoch 3 - iter 8/48 - loss 0.38023174 - time (sec): 4.19 - samples/sec: 1400.36 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:27:56,459 epoch 3 - iter 12/48 - loss 0.38279022 - time (sec): 5.95 - samples/sec: 1477.77 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:27:58,856 epoch 3 - iter 16/48 - loss 0.35668301 - time (sec): 8.34 - samples/sec: 1463.88 - lr: 0.000026 - momentum: 0.000000
2024-03-26 09:28:00,266 epoch 3 - iter 20/48 - loss 0.36344288 - time (sec): 9.75 - samples/sec: 1517.17 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:03,119 epoch 3 - iter 24/48 - loss 0.34539125 - time (sec): 12.61 - samples/sec: 1500.12 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:03,860 epoch 3 - iter 28/48 - loss 0.33533201 - time (sec): 13.35 - samples/sec: 1576.47 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:06,336 epoch 3 - iter 32/48 - loss 0.32173533 - time (sec): 15.82 - samples/sec: 1518.36 - lr: 0.000025 - momentum: 0.000000
2024-03-26 09:28:08,290 epoch 3 - iter 36/48 - loss 0.31315603 - time (sec): 17.78 - samples/sec: 1510.87 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:28:10,135 epoch 3 - iter 40/48 - loss 0.31183643 - time (sec): 19.62 - samples/sec: 1499.51 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:28:12,217 epoch 3 - iter 44/48 - loss 0.30012530 - time (sec): 21.70 - samples/sec: 1502.79 - lr: 0.000024 - momentum: 0.000000
2024-03-26 09:28:13,416 epoch 3 - iter 48/48 - loss 0.29678680 - time (sec): 22.90 - samples/sec: 1505.13 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:13,416 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:13,416 EPOCH 3 done: loss 0.2968 - lr: 0.000023
2024-03-26 09:28:14,287 DEV : loss 0.26448285579681396 - f1-score (micro avg)  0.8403
2024-03-26 09:28:14,288 saving best model
2024-03-26 09:28:14,759 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:16,204 epoch 4 - iter 4/48 - loss 0.26363306 - time (sec): 1.44 - samples/sec: 1890.48 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:18,545 epoch 4 - iter 8/48 - loss 0.23484258 - time (sec): 3.78 - samples/sec: 1516.61 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:20,589 epoch 4 - iter 12/48 - loss 0.23169066 - time (sec): 5.83 - samples/sec: 1499.47 - lr: 0.000023 - momentum: 0.000000
2024-03-26 09:28:22,699 epoch 4 - iter 16/48 - loss 0.20987272 - time (sec): 7.94 - samples/sec: 1508.53 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:25,648 epoch 4 - iter 20/48 - loss 0.19941139 - time (sec): 10.89 - samples/sec: 1422.78 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:27,042 epoch 4 - iter 24/48 - loss 0.19827921 - time (sec): 12.28 - samples/sec: 1467.58 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:28,520 epoch 4 - iter 28/48 - loss 0.19424885 - time (sec): 13.76 - samples/sec: 1507.39 - lr: 0.000022 - momentum: 0.000000
2024-03-26 09:28:30,929 epoch 4 - iter 32/48 - loss 0.20143061 - time (sec): 16.17 - samples/sec: 1499.19 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:28:31,889 epoch 4 - iter 36/48 - loss 0.20123336 - time (sec): 17.13 - samples/sec: 1551.30 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:28:34,211 epoch 4 - iter 40/48 - loss 0.19568585 - time (sec): 19.45 - samples/sec: 1501.59 - lr: 0.000021 - momentum: 0.000000
2024-03-26 09:28:35,958 epoch 4 - iter 44/48 - loss 0.19592911 - time (sec): 21.20 - samples/sec: 1522.21 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:37,276 epoch 4 - iter 48/48 - loss 0.19413849 - time (sec): 22.51 - samples/sec: 1531.11 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:37,276 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:37,276 EPOCH 4 done: loss 0.1941 - lr: 0.000020
2024-03-26 09:28:38,202 DEV : loss 0.20181307196617126 - f1-score (micro avg)  0.8661
2024-03-26 09:28:38,205 saving best model
2024-03-26 09:28:38,648 ----------------------------------------------------------------------------------------------------
2024-03-26 09:28:40,513 epoch 5 - iter 4/48 - loss 0.18286346 - time (sec): 1.86 - samples/sec: 1496.88 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:42,881 epoch 5 - iter 8/48 - loss 0.15386085 - time (sec): 4.23 - samples/sec: 1403.07 - lr: 0.000020 - momentum: 0.000000
2024-03-26 09:28:44,784 epoch 5 - iter 12/48 - loss 0.15581086 - time (sec): 6.13 - samples/sec: 1396.58 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:28:46,735 epoch 5 - iter 16/48 - loss 0.15172544 - time (sec): 8.09 - samples/sec: 1428.78 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:28:48,592 epoch 5 - iter 20/48 - loss 0.15213150 - time (sec): 9.94 - samples/sec: 1439.35 - lr: 0.000019 - momentum: 0.000000
2024-03-26 09:28:50,059 epoch 5 - iter 24/48 - loss 0.15722917 - time (sec): 11.41 - samples/sec: 1490.75 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:52,196 epoch 5 - iter 28/48 - loss 0.15699606 - time (sec): 13.55 - samples/sec: 1487.07 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:54,740 epoch 5 - iter 32/48 - loss 0.15384884 - time (sec): 16.09 - samples/sec: 1471.23 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:57,055 epoch 5 - iter 36/48 - loss 0.14632635 - time (sec): 18.41 - samples/sec: 1474.42 - lr: 0.000018 - momentum: 0.000000
2024-03-26 09:28:57,924 epoch 5 - iter 40/48 - loss 0.14743954 - time (sec): 19.27 - samples/sec: 1518.00 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:00,487 epoch 5 - iter 44/48 - loss 0.14301882 - time (sec): 21.84 - samples/sec: 1482.96 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:01,928 epoch 5 - iter 48/48 - loss 0.14207733 - time (sec): 23.28 - samples/sec: 1480.88 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:01,928 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:01,928 EPOCH 5 done: loss 0.1421 - lr: 0.000017
2024-03-26 09:29:02,798 DEV : loss 0.1995552033185959 - f1-score (micro avg)  0.8842
2024-03-26 09:29:02,799 saving best model
2024-03-26 09:29:03,271 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:05,224 epoch 6 - iter 4/48 - loss 0.08497267 - time (sec): 1.95 - samples/sec: 1354.85 - lr: 0.000017 - momentum: 0.000000
2024-03-26 09:29:07,333 epoch 6 - iter 8/48 - loss 0.11241659 - time (sec): 4.06 - samples/sec: 1362.26 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:29:09,110 epoch 6 - iter 12/48 - loss 0.11714498 - time (sec): 5.84 - samples/sec: 1480.36 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:29:11,290 epoch 6 - iter 16/48 - loss 0.11620269 - time (sec): 8.02 - samples/sec: 1433.00 - lr: 0.000016 - momentum: 0.000000
2024-03-26 09:29:13,011 epoch 6 - iter 20/48 - loss 0.11740035 - time (sec): 9.74 - samples/sec: 1440.89 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:15,416 epoch 6 - iter 24/48 - loss 0.11484259 - time (sec): 12.14 - samples/sec: 1417.97 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:17,210 epoch 6 - iter 28/48 - loss 0.11528236 - time (sec): 13.94 - samples/sec: 1419.07 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:19,622 epoch 6 - iter 32/48 - loss 0.11521092 - time (sec): 16.35 - samples/sec: 1398.04 - lr: 0.000015 - momentum: 0.000000
2024-03-26 09:29:22,955 epoch 6 - iter 36/48 - loss 0.11033813 - time (sec): 19.68 - samples/sec: 1354.87 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:24,519 epoch 6 - iter 40/48 - loss 0.10826951 - time (sec): 21.25 - samples/sec: 1390.87 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:26,292 epoch 6 - iter 44/48 - loss 0.10638058 - time (sec): 23.02 - samples/sec: 1395.11 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:27,541 epoch 6 - iter 48/48 - loss 0.10980662 - time (sec): 24.27 - samples/sec: 1420.44 - lr: 0.000014 - momentum: 0.000000
2024-03-26 09:29:27,541 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:27,541 EPOCH 6 done: loss 0.1098 - lr: 0.000014
2024-03-26 09:29:28,421 DEV : loss 0.190290629863739 - f1-score (micro avg)  0.89
2024-03-26 09:29:28,422 saving best model
2024-03-26 09:29:28,868 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:30,475 epoch 7 - iter 4/48 - loss 0.13132601 - time (sec): 1.60 - samples/sec: 1712.33 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:29:32,500 epoch 7 - iter 8/48 - loss 0.10894840 - time (sec): 3.63 - samples/sec: 1481.78 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:29:34,756 epoch 7 - iter 12/48 - loss 0.11116772 - time (sec): 5.89 - samples/sec: 1410.62 - lr: 0.000013 - momentum: 0.000000
2024-03-26 09:29:37,286 epoch 7 - iter 16/48 - loss 0.10061780 - time (sec): 8.42 - samples/sec: 1371.43 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:39,521 epoch 7 - iter 20/48 - loss 0.10057925 - time (sec): 10.65 - samples/sec: 1372.26 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:40,854 epoch 7 - iter 24/48 - loss 0.09594952 - time (sec): 11.98 - samples/sec: 1427.56 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:42,237 epoch 7 - iter 28/48 - loss 0.09355689 - time (sec): 13.37 - samples/sec: 1492.28 - lr: 0.000012 - momentum: 0.000000
2024-03-26 09:29:44,188 epoch 7 - iter 32/48 - loss 0.08991898 - time (sec): 15.32 - samples/sec: 1480.72 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:29:46,307 epoch 7 - iter 36/48 - loss 0.08734474 - time (sec): 17.44 - samples/sec: 1468.87 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:29:48,727 epoch 7 - iter 40/48 - loss 0.08720038 - time (sec): 19.86 - samples/sec: 1447.45 - lr: 0.000011 - momentum: 0.000000
2024-03-26 09:29:50,527 epoch 7 - iter 44/48 - loss 0.08727137 - time (sec): 21.66 - samples/sec: 1463.81 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:52,412 epoch 7 - iter 48/48 - loss 0.08649088 - time (sec): 23.54 - samples/sec: 1464.31 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:52,412 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:52,412 EPOCH 7 done: loss 0.0865 - lr: 0.000010
2024-03-26 09:29:53,341 DEV : loss 0.17982175946235657 - f1-score (micro avg)  0.9045
2024-03-26 09:29:53,343 saving best model
2024-03-26 09:29:53,800 ----------------------------------------------------------------------------------------------------
2024-03-26 09:29:55,741 epoch 8 - iter 4/48 - loss 0.09321231 - time (sec): 1.94 - samples/sec: 1393.95 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:58,488 epoch 8 - iter 8/48 - loss 0.07249940 - time (sec): 4.69 - samples/sec: 1185.45 - lr: 0.000010 - momentum: 0.000000
2024-03-26 09:29:59,746 epoch 8 - iter 12/48 - loss 0.07664782 - time (sec): 5.94 - samples/sec: 1342.92 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:02,133 epoch 8 - iter 16/48 - loss 0.08386172 - time (sec): 8.33 - samples/sec: 1351.18 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:04,610 epoch 8 - iter 20/48 - loss 0.07359994 - time (sec): 10.81 - samples/sec: 1394.07 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:05,883 epoch 8 - iter 24/48 - loss 0.07537128 - time (sec): 12.08 - samples/sec: 1473.14 - lr: 0.000009 - momentum: 0.000000
2024-03-26 09:30:09,106 epoch 8 - iter 28/48 - loss 0.07450515 - time (sec): 15.30 - samples/sec: 1425.76 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:30:11,077 epoch 8 - iter 32/48 - loss 0.07698629 - time (sec): 17.28 - samples/sec: 1427.11 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:30:12,123 epoch 8 - iter 36/48 - loss 0.07680939 - time (sec): 18.32 - samples/sec: 1465.62 - lr: 0.000008 - momentum: 0.000000
2024-03-26 09:30:13,773 epoch 8 - iter 40/48 - loss 0.07577223 - time (sec): 19.97 - samples/sec: 1463.42 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:15,328 epoch 8 - iter 44/48 - loss 0.07498246 - time (sec): 21.53 - samples/sec: 1484.35 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:17,249 epoch 8 - iter 48/48 - loss 0.07557714 - time (sec): 23.45 - samples/sec: 1470.17 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:17,249 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:17,249 EPOCH 8 done: loss 0.0756 - lr: 0.000007
2024-03-26 09:30:18,149 DEV : loss 0.17024415731430054 - f1-score (micro avg)  0.918
2024-03-26 09:30:18,151 saving best model
2024-03-26 09:30:18,606 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:20,426 epoch 9 - iter 4/48 - loss 0.05767140 - time (sec): 1.82 - samples/sec: 1473.96 - lr: 0.000007 - momentum: 0.000000
2024-03-26 09:30:23,553 epoch 9 - iter 8/48 - loss 0.04154401 - time (sec): 4.94 - samples/sec: 1262.98 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:25,189 epoch 9 - iter 12/48 - loss 0.05035534 - time (sec): 6.58 - samples/sec: 1320.70 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:27,408 epoch 9 - iter 16/48 - loss 0.05450684 - time (sec): 8.80 - samples/sec: 1309.29 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:29,653 epoch 9 - iter 20/48 - loss 0.05915286 - time (sec): 11.04 - samples/sec: 1339.63 - lr: 0.000006 - momentum: 0.000000
2024-03-26 09:30:31,806 epoch 9 - iter 24/48 - loss 0.06294200 - time (sec): 13.20 - samples/sec: 1355.11 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:30:34,148 epoch 9 - iter 28/48 - loss 0.06112591 - time (sec): 15.54 - samples/sec: 1348.70 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:30:36,453 epoch 9 - iter 32/48 - loss 0.06079575 - time (sec): 17.84 - samples/sec: 1345.68 - lr: 0.000005 - momentum: 0.000000
2024-03-26 09:30:38,226 epoch 9 - iter 36/48 - loss 0.06342821 - time (sec): 19.62 - samples/sec: 1364.71 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:40,379 epoch 9 - iter 40/48 - loss 0.06494860 - time (sec): 21.77 - samples/sec: 1354.37 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:42,484 epoch 9 - iter 44/48 - loss 0.06451464 - time (sec): 23.88 - samples/sec: 1365.50 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:43,220 epoch 9 - iter 48/48 - loss 0.06516833 - time (sec): 24.61 - samples/sec: 1400.60 - lr: 0.000004 - momentum: 0.000000
2024-03-26 09:30:43,221 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:43,221 EPOCH 9 done: loss 0.0652 - lr: 0.000004
2024-03-26 09:30:44,109 DEV : loss 0.16860732436180115 - f1-score (micro avg)  0.9142
2024-03-26 09:30:44,110 ----------------------------------------------------------------------------------------------------
2024-03-26 09:30:45,829 epoch 10 - iter 4/48 - loss 0.04146833 - time (sec): 1.72 - samples/sec: 1529.39 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:30:47,751 epoch 10 - iter 8/48 - loss 0.04228870 - time (sec): 3.64 - samples/sec: 1521.79 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:30:50,430 epoch 10 - iter 12/48 - loss 0.04638348 - time (sec): 6.32 - samples/sec: 1380.80 - lr: 0.000003 - momentum: 0.000000
2024-03-26 09:30:52,334 epoch 10 - iter 16/48 - loss 0.05569483 - time (sec): 8.22 - samples/sec: 1395.05 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:54,151 epoch 10 - iter 20/48 - loss 0.05880033 - time (sec): 10.04 - samples/sec: 1440.66 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:55,784 epoch 10 - iter 24/48 - loss 0.06605991 - time (sec): 11.67 - samples/sec: 1452.74 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:57,517 epoch 10 - iter 28/48 - loss 0.06374936 - time (sec): 13.41 - samples/sec: 1475.79 - lr: 0.000002 - momentum: 0.000000
2024-03-26 09:30:58,700 epoch 10 - iter 32/48 - loss 0.06224483 - time (sec): 14.59 - samples/sec: 1509.54 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:01,656 epoch 10 - iter 36/48 - loss 0.05697960 - time (sec): 17.55 - samples/sec: 1459.85 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:04,421 epoch 10 - iter 40/48 - loss 0.06062508 - time (sec): 20.31 - samples/sec: 1431.81 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:07,187 epoch 10 - iter 44/48 - loss 0.05774779 - time (sec): 23.08 - samples/sec: 1398.91 - lr: 0.000001 - momentum: 0.000000
2024-03-26 09:31:08,778 epoch 10 - iter 48/48 - loss 0.05640631 - time (sec): 24.67 - samples/sec: 1397.47 - lr: 0.000000 - momentum: 0.000000
2024-03-26 09:31:08,778 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:08,778 EPOCH 10 done: loss 0.0564 - lr: 0.000000
2024-03-26 09:31:09,670 DEV : loss 0.16845521330833435 - f1-score (micro avg)  0.9144
2024-03-26 09:31:09,951 ----------------------------------------------------------------------------------------------------
2024-03-26 09:31:09,951 Loading model from best epoch ...
2024-03-26 09:31:10,857 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 09:31:11,602 
Results:
- F-score (micro) 0.8904
- F-score (macro) 0.6781
- Accuracy 0.808

By class:
              precision    recall  f1-score   support

 Unternehmen     0.8927    0.8759    0.8843       266
 Auslagerung     0.8333    0.8835    0.8577       249
         Ort     0.9565    0.9851    0.9706       134
    Software     0.0000    0.0000    0.0000         0

   micro avg     0.8797    0.9014    0.8904       649
   macro avg     0.6706    0.6861    0.6781       649
weighted avg     0.8831    0.9014    0.8919       649

2024-03-26 09:31:11,602 ----------------------------------------------------------------------------------------------------