|
import streamlit as st |
|
from ctransformers import AutoModelForCausalLM |
|
|
|
|
|
llm = AutoModelForCausalLM.from_pretrained( |
|
model_path_or_repo_id="my-model/mistral-7b-instruct-v0.2.Q2_K.gguf", |
|
model_type="mistral", |
|
) |
|
|
|
st.title("Conversational Chat with Mistral 🦙🗨️") |
|
|
|
|
|
|
|
def generate_response(user_query): |
|
prompt = f"""The user query is '{user_query}'""" |
|
args = { |
|
"prompt": prompt, |
|
"stream": True, |
|
"max_new_tokens": 2048, |
|
"temperature": 0, |
|
} |
|
|
|
response_placeholder = st.empty() |
|
|
|
response_so_far = "" |
|
|
|
for chunk in llm(**args): |
|
response_so_far += chunk |
|
response_placeholder.write(response_so_far) |
|
|
|
return |
|
|
|
|
|
|
|
user_query = st.text_input("Enter your query:", "") |
|
|
|
if user_query: |
|
|
|
generate_response(user_query) |