qianxiao1111's picture
upgrade: add benchmarks eval
2a26d3b
raw
history blame
3.98 kB
import argparse
import numpy as np
from tqdm import tqdm
from pebble import ProcessPool
from concurrent.futures import TimeoutError
from grader import *
from parser import *
from utils import load_jsonl
from python_executor import PythonExecutor
def evaluate(data_name, prompt_type, samples: list=None, file_path: str=None, max_num_samples=None, execute=False):
assert samples or file_path, "samples or file_path must be provided"
if not samples:
samples = list(load_jsonl(file_path))
if 'idx' in samples[0]:
samples = {sample['idx']: sample for sample in samples}.values()
samples = sorted(samples, key=lambda x: x['idx'])
else:
samples = [dict(idx=idx, **sample) for idx, sample in enumerate(samples)]
if max_num_samples:
print(f"max_num_samples: {max_num_samples} / {len(samples)}")
samples = samples[:max_num_samples]
# parse gt
for sample in samples:
sample['gt_cot'], sample['gt'] = parse_ground_truth(sample, data_name)
params = [(idx, pred, sample['gt']) for idx, sample in enumerate(samples) for pred in sample['pred']]
scores = []
timeout_cnt = 0
with ProcessPool(max_workers=1) as pool:
future = pool.map(math_equal_process, params, timeout=3)
iterator = future.result()
with tqdm(total=len(samples), desc="Evaluate") as progress_bar:
while True:
try:
result = next(iterator)
scores.append(result)
except StopIteration:
break
except TimeoutError as error:
print(error)
scores.append(False)
timeout_cnt += 1
except Exception as error:
print(error.traceback)
exit()
progress_bar.update(1)
idx = 0
score_mat = []
for sample in samples:
sample['score'] = scores[idx: idx+len(sample['pred'])]
assert len(sample['score']) == len(sample['pred'])
score_mat.append(sample['score'])
idx += len(sample['pred'])
max_len = max([len(s) for s in score_mat])
for i, s in enumerate(score_mat):
if len(s) < max_len:
score_mat[i] = s + [s[-1]] * (max_len - len(s)) # pad
# output mean of each column of scores
col_means= np.array(score_mat).mean(axis=0)
mean_score = list(np.round(col_means * 100, decimals=1))
result_json = {
"num_samples": len(samples),
"num_scores": len(scores),
"timeout_samples": timeout_cnt,
"empty_samples": len([s for s in samples if not s['pred'][-1]]),
"acc": mean_score[0]
}
# each type score
if "type" in samples[0]:
type_scores = {}
for sample in samples:
if sample['type'] not in type_scores:
type_scores[sample['type']] = []
type_scores[sample['type']].append(sample['score'][-1])
type_scores = {k: np.round(np.array(v).mean() * 100, decimals=1) for k, v in type_scores.items()}
type_scores = {k: v for k, v in sorted(type_scores.items(), key=lambda item: item[0])}
result_json['type_acc'] = type_scores
print(result_json)
return samples, result_json
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--data_name", type=str, default="math")
parser.add_argument("--prompt_type", type=str, default="tool-integrated")
parser.add_argument("--file_path", type=str, default=None, required=True)
parser.add_argument("--max_num_samples", type=int, default=None)
parser.add_argument("--execute", action="store_true")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
evaluate(data_name=args.data_name, prompt_type=args.prompt_type, file_path=args.file_path,
max_num_samples=args.max_num_samples, execute=args.execute)