File size: 2,422 Bytes
c1415f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- szeged_ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: hun_wnut_modell
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: szeged_ner
type: szeged_ner
config: business
split: test
args: business
metrics:
- name: Precision
type: precision
value: 0.8590342679127726
- name: Recall
type: recall
value: 0.9004081632653061
- name: F1
type: f1
value: 0.8792347548824233
- name: Accuracy
type: accuracy
value: 0.9881996563884619
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# hun_wnut_modell
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0419
- Precision: 0.8590
- Recall: 0.9004
- F1: 0.8792
- Accuracy: 0.9882
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2035 | 1.0 | 511 | 0.0665 | 0.8124 | 0.8343 | 0.8232 | 0.9813 |
| 0.075 | 2.0 | 1022 | 0.0501 | 0.8280 | 0.8841 | 0.8551 | 0.9847 |
| 0.0498 | 3.0 | 1533 | 0.0444 | 0.8452 | 0.8914 | 0.8677 | 0.9866 |
| 0.0354 | 4.0 | 2044 | 0.0417 | 0.8661 | 0.8980 | 0.8818 | 0.9885 |
| 0.0275 | 5.0 | 2555 | 0.0419 | 0.8590 | 0.9004 | 0.8792 | 0.9882 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|