--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - szeged_ner metrics: - precision - recall - f1 - accuracy model-index: - name: hun_wnut_modell results: - task: name: Token Classification type: token-classification dataset: name: szeged_ner type: szeged_ner config: business split: test args: business metrics: - name: Precision type: precision value: 0.8590342679127726 - name: Recall type: recall value: 0.9004081632653061 - name: F1 type: f1 value: 0.8792347548824233 - name: Accuracy type: accuracy value: 0.9881996563884619 --- # hun_wnut_modell This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the szeged_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0419 - Precision: 0.8590 - Recall: 0.9004 - F1: 0.8792 - Accuracy: 0.9882 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2035 | 1.0 | 511 | 0.0665 | 0.8124 | 0.8343 | 0.8232 | 0.9813 | | 0.075 | 2.0 | 1022 | 0.0501 | 0.8280 | 0.8841 | 0.8551 | 0.9847 | | 0.0498 | 3.0 | 1533 | 0.0444 | 0.8452 | 0.8914 | 0.8677 | 0.9866 | | 0.0354 | 4.0 | 2044 | 0.0417 | 0.8661 | 0.8980 | 0.8818 | 0.9885 | | 0.0275 | 5.0 | 2555 | 0.0419 | 0.8590 | 0.9004 | 0.8792 | 0.9882 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3