File size: 30,541 Bytes
e4bf7b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
---

base_model: google-bert/bert-base-uncased
datasets:
- sentence-transformers/gooaq
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3002496
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: how to change date format in ms project 2007?
  sentences:
  - '[''Choose File > Options.'', ''Select General.'', ''Under Project view, pick

    an option from the Date format list.'']'
  - Cats can be very affectionate and bonded with each other and still bond well and
    show affection to their human. Getting two kittens from the same litter, regardless
    of gender, can make it easier for them to befriend each other and play—but any
    two kittens generally tend to get on well after introductions.
  - 'Treat your permed hair like silk or another delicate fabric: washing it once

    a week is enough to keep it clean and help maintain its beauty. Wash your hair

    with warm water. Hot water can strip your hair of oils that help keep it moisturized

    and looking lustrous. Hot water can also ruin the curls.'
- source_sentence: is the mother in vinegar good for you?
  sentences:
  - Some people say the “mother,” the cloud of yeast and bacteria you might see in
    a bottle of apple cider vinegar, is what makes it healthy. These things are probiotic,
    meaning they might give your digestive system a boost, but there isn't enough
    research to back up the other claims.
  - It is normal for vaginal discharge to increase in amount and become “stringy”
    (like egg whites) during the middle of your menstrual cycle when you're ovulating.
    If you find that your normal discharge is annoying, you can wear panty liners/shields
    on your underwear.
  - State law protects cypress trees along Florida's waterways, but it has been up
    to the courts to enforce the regulations. ... Landowners can cut down cypress
    trees on their land, but trees below the high-water mark are considered state
    property and are protected.
- source_sentence: if you're blocked on whatsapp can you see last seen?
  sentences:
  - Jaguars aren't going to London this year, releases new plan for season tickets.
    The Jaguars will no longer be playing two games in London, and will instead play
    both games at TIAA Bank Field.
  - Typically, most drugs are absorbed within 20-30 minutes after given by mouth.
    Vomiting after this amount of time is not related to the drug in the stomach as
    the vast majority, if not all, has already been absorbed.
  - You can no longer see a contact's last seen or online in the chat window. Learn
    more here. You do not see updates to a contact's profile photo. Any messages sent
    to a contact who has blocked you will always show one check mark (message sent),
    and never show a second check mark (message delivered).
- source_sentence: how many enchantments can you put on armor?
  sentences:
  - 4 Answers. You can in theory add every enchantment that is compatible with a tool/weapon/armor
    onto the same item. The bow can have these 7 enchantments, though mending and
    infinity are mutually exclusive.
  - The sleeve length will make or break a jacket. If too long, it will make the jacket
    look too big, and if too short, like you have outgrown your jacket. ... This is
    when you need an experienced tailor, who will be able to shorten the sleeves from
    the shoulders, so the details on the cuffs are not disturbed.
  - Grace period of 60 days granted after the expiration of license for purpose of
    renewal, and license is valid during this period. Renewal of license may occur
    from 60 days (effective August 1, 2016, 180 days) prior to expiration to 3 years
    after date; afterwards, applicant required to take and pass examination.
- source_sentence: what is the best drugstore shampoo for volume?
  sentences:
  - '[''#8. ... '', ''#7. ... '', ''#6. Hask Biotin Boost Shampoo. ... '', ''#5. Pantene

    Pro-V Sheer Volume Shampoo. ... '', ''#4. John Frieda Luxurious Volume Touchably

    Full Shampoo. ... '', ''#3. Acure Vivacious Volume Peppermint Shampoo. ... '',

    ''#2. OGX Thick & Full Biotin & Collagen Shampoo. ... '', "#1. L''Oréal Paris

    EverPure Sulfate Free Volume Shampoo."]'
  - Genes can't control an organism on their own; rather, they must interact with
    and respond to the organism's environment. Some genes are constitutive, or always
    "on," regardless of environmental conditions.
  - In electricity, the phase refers to the distribution of a load. What is the difference
    between single-phase and three-phase power supplies? Single-phase power is a two-wire
    alternating current (ac) power circuit. ... Three-phase power is a three-wire
    ac power circuit with each phase ac signal 120 electrical degrees apart.
co2_eq_emissions:
  emissions: 523.8395173647017
  energy_consumed: 1.3476635503925931
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 3.544
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: BERT base uncased trained on GooAQ triplets
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: gooaq dev
      type: gooaq-dev
    metrics:
    - type: cosine_accuracy@1
      value: 0.7001
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.8712
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9219
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9629
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.7001
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.2904
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.18438000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09629000000000001
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.7001
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.8712
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9219
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9629
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8358567622290791
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7945682142857085
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.796615366916047
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.6709
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.8558
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9096
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9567
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.6709
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.28526666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18192000000000003
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09567
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.6709
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.8558
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9096
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9567
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.8177950307933399
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.772776468253962
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.7751231358698718
      name: Dot Map@100
---


# BERT base uncased trained on GooAQ triplets

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```

SentenceTransformer(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SentenceTransformer



# Download from the 🤗 Hub

model = SentenceTransformer("tomaarsen/bert-base-uncased-gooaq")

# Run inference

sentences = [

    'what is the best drugstore shampoo for volume?',

    '[\'#8. ... \', \'#7. ... \', \'#6. Hask Biotin Boost Shampoo. ... \', \'#5. Pantene Pro-V Sheer Volume Shampoo. ... \', \'#4. John Frieda Luxurious Volume Touchably Full Shampoo. ... \', \'#3. Acure Vivacious Volume Peppermint Shampoo. ... \', \'#2. OGX Thick & Full Biotin & Collagen Shampoo. ... \', "#1. L\'Oréal Paris EverPure Sulfate Free Volume Shampoo."]',

    'In electricity, the phase refers to the distribution of a load. What is the difference between single-phase and three-phase power supplies? Single-phase power is a two-wire alternating current (ac) power circuit. ... Three-phase power is a three-wire ac power circuit with each phase ac signal 120 electrical degrees apart.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# [3, 768]



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `gooaq-dev`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.7001     |

| cosine_accuracy@3   | 0.8712     |
| cosine_accuracy@5   | 0.9219     |

| cosine_accuracy@10  | 0.9629     |
| cosine_precision@1  | 0.7001     |

| cosine_precision@3  | 0.2904     |
| cosine_precision@5  | 0.1844     |

| cosine_precision@10 | 0.0963     |
| cosine_recall@1     | 0.7001     |

| cosine_recall@3     | 0.8712     |
| cosine_recall@5     | 0.9219     |

| cosine_recall@10    | 0.9629     |
| cosine_ndcg@10      | 0.8359     |

| cosine_mrr@10       | 0.7946     |
| **cosine_map@100**  | **0.7966** |

| dot_accuracy@1      | 0.6709     |

| dot_accuracy@3      | 0.8558     |

| dot_accuracy@5      | 0.9096     |

| dot_accuracy@10     | 0.9567     |

| dot_precision@1     | 0.6709     |

| dot_precision@3     | 0.2853     |

| dot_precision@5     | 0.1819     |

| dot_precision@10    | 0.0957     |

| dot_recall@1        | 0.6709     |

| dot_recall@3        | 0.8558     |

| dot_recall@5        | 0.9096     |

| dot_recall@10       | 0.9567     |

| dot_ndcg@10         | 0.8178     |

| dot_mrr@10          | 0.7728     |

| dot_map@100         | 0.7751     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### sentence-transformers/gooaq



* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 3,002,496 training samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.95 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 17 tokens</li><li>mean: 60.83 tokens</li><li>max: 130 tokens</li></ul> |

* Samples:

  | question                                                                | answer                                                                                                                                                                                                                                                                                                                                   |

  |:------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>what are the differences between internet and web?</code>         | <code>The Internet is a global network of networks while the Web, also referred formally as World Wide Web (www) is collection of information which is accessed via the Internet. Another way to look at this difference is; the Internet is infrastructure while the Web is service on top of that infrastructure.</code>               |

  | <code>who is the most important person in a first aid situation?</code> | <code>Subscribe to New First Aid For Free The main principle of incident management is that you are the most important person and your safety comes first! Your first actions when coming across the scene of an incident should be: Check for any dangers to yourself or bystanders. Manage any dangers found (if safe to do so)</code> |

  | <code>why is jibjab not working?</code>                                 | <code>Usually disabling your ad blockers for JibJab will resolve this issue. If you're still having issues loading the card after your ad blockers are disabled, you can try clearing your cache/cookies or updating and restarting your browser. As a last resort, you can try opening JibJab from a different browser.</code>          |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Evaluation Dataset



#### sentence-transformers/gooaq



* Dataset: [sentence-transformers/gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 10,000 evaluation samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 12.01 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 59.81 tokens</li><li>max: 145 tokens</li></ul> |

* Samples:

  | question                                                                               | answer                                                                                                                                                                                                                                                                                                         |

  |:---------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>what are some common attributes/characteristics between animal and human?</code> | <code>['Culture.', 'Emotions.', 'Language.', 'Humour.', 'Tool Use.', 'Memory.', 'Self-Awareness.', 'Intelligence.']</code>                                                                                                                                                                                     |

  | <code>is folic acid the same as vitamin b?</code>                                      | <code>Vitamin B9, also called folate or folic acid, is one of 8 B vitamins. All B vitamins help the body convert food (carbohydrates) into fuel (glucose), which is used to produce energy. These B vitamins, often referred to as B-complex vitamins, also help the body use fats and protein.</code>         |

  | <code>are bendy buses still in london?</code>                                          | <code>Bendy bus makes final journey for Transport for London. The last of London's bendy buses was taken off the roads on Friday night. ... The final route to be operated with bendy buses has been the 207 between Hayes and White City, and the last of the long vehicles was to run late on Friday.</code> |

* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:

  ```json

  {

      "scale": 20.0,

      "similarity_fct": "cos_sim"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 128

- `per_device_eval_batch_size`: 128

- `learning_rate`: 2e-05

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `bf16`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 128

- `per_device_eval_batch_size`: 128

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `learning_rate`: 2e-05

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: False

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: False

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

| Epoch  | Step  | Training Loss | loss   | gooaq-dev_cosine_map@100 |

|:------:|:-----:|:-------------:|:------:|:------------------------:|

| 0      | 0     | -             | -      | 0.2018                   |

| 0.0000 | 1     | 2.6207        | -      | -                        |

| 0.0213 | 500   | 0.9092        | -      | -                        |

| 0.0426 | 1000  | 0.2051        | -      | -                        |

| 0.0639 | 1500  | 0.1354        | -      | -                        |

| 0.0853 | 2000  | 0.1089        | 0.0719 | 0.7124                   |

| 0.1066 | 2500  | 0.0916        | -      | -                        |

| 0.1279 | 3000  | 0.0812        | -      | -                        |

| 0.1492 | 3500  | 0.0716        | -      | -                        |

| 0.1705 | 4000  | 0.0658        | 0.0517 | 0.7432                   |

| 0.1918 | 4500  | 0.0623        | -      | -                        |

| 0.2132 | 5000  | 0.0596        | -      | -                        |

| 0.2345 | 5500  | 0.0554        | -      | -                        |

| 0.2558 | 6000  | 0.0504        | 0.0401 | 0.7580                   |

| 0.2771 | 6500  | 0.0498        | -      | -                        |

| 0.2984 | 7000  | 0.0483        | -      | -                        |

| 0.3197 | 7500  | 0.0487        | -      | -                        |

| 0.3410 | 8000  | 0.0458        | 0.0359 | 0.7652                   |

| 0.3624 | 8500  | 0.0435        | -      | -                        |

| 0.3837 | 9000  | 0.0421        | -      | -                        |

| 0.4050 | 9500  | 0.0421        | -      | -                        |

| 0.4263 | 10000 | 0.0405        | 0.0329 | 0.7738                   |

| 0.4476 | 10500 | 0.0392        | -      | -                        |

| 0.4689 | 11000 | 0.0388        | -      | -                        |

| 0.4903 | 11500 | 0.0388        | -      | -                        |

| 0.5116 | 12000 | 0.0361        | 0.0290 | 0.7810                   |

| 0.5329 | 12500 | 0.0362        | -      | -                        |

| 0.5542 | 13000 | 0.0356        | -      | -                        |

| 0.5755 | 13500 | 0.0352        | -      | -                        |

| 0.5968 | 14000 | 0.0349        | 0.0267 | 0.7866                   |

| 0.6182 | 14500 | 0.0334        | -      | -                        |

| 0.6395 | 15000 | 0.0323        | -      | -                        |

| 0.6608 | 15500 | 0.0325        | -      | -                        |

| 0.6821 | 16000 | 0.0316        | 0.0256 | 0.7879                   |

| 0.7034 | 16500 | 0.0313        | -      | -                        |

| 0.7247 | 17000 | 0.0306        | -      | -                        |

| 0.7460 | 17500 | 0.0328        | -      | -                        |

| 0.7674 | 18000 | 0.0303        | 0.0238 | 0.7928                   |

| 0.7887 | 18500 | 0.0301        | -      | -                        |

| 0.8100 | 19000 | 0.0291        | -      | -                        |

| 0.8313 | 19500 | 0.0286        | -      | -                        |

| 0.8526 | 20000 | 0.0295        | 0.0218 | 0.7952                   |

| 0.8739 | 20500 | 0.0288        | -      | -                        |

| 0.8953 | 21000 | 0.0277        | -      | -                        |

| 0.9166 | 21500 | 0.0266        | -      | -                        |

| 0.9379 | 22000 | 0.0289        | 0.0218 | 0.7971                   |

| 0.9592 | 22500 | 0.0286        | -      | -                        |

| 0.9805 | 23000 | 0.0275        | -      | -                        |

| 1.0    | 23457 | -             | -      | 0.7966                   |





### Environmental Impact

Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).

- **Energy Consumed**: 1.348 kWh

- **Carbon Emitted**: 0.524 kg of CO2

- **Hours Used**: 3.544 hours



### Training Hardware

- **On Cloud**: No

- **GPU Model**: 1 x NVIDIA GeForce RTX 3090

- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K

- **RAM Size**: 31.78 GB



### Framework Versions

- Python: 3.11.6

- Sentence Transformers: 3.1.0.dev0

- Transformers: 4.41.2

- PyTorch: 2.3.0+cu121

- Accelerate: 0.31.0

- Datasets: 2.20.0

- Tokenizers: 0.19.1



## Citation



### BibTeX



#### Sentence Transformers

```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```



#### MultipleNegativesRankingLoss

```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply}, 

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```



<!--

## Glossary



*Clearly define terms in order to be accessible across audiences.*

-->



<!--

## Model Card Authors



*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*

-->



<!--

## Model Card Contact



*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*

-->