File size: 2,373 Bytes
23bd118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
base_model: microsoft/resnet-50
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-hateful-meme-restructured
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.5
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# resnet-50-finetuned-hateful-meme-restructured

This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7132
- Accuracy: 0.5

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.6633        | 0.99  | 66   | 0.7132          | 0.5      |
| 0.6561        | 2.0   | 133  | 0.7309          | 0.5      |
| 0.6497        | 2.99  | 199  | 0.7314          | 0.5      |
| 0.6529        | 4.0   | 266  | 0.7296          | 0.5      |
| 0.6336        | 4.99  | 332  | 0.7386          | 0.5      |
| 0.625         | 6.0   | 399  | 0.7403          | 0.5      |
| 0.6511        | 6.99  | 465  | 0.7425          | 0.5      |
| 0.6567        | 8.0   | 532  | 0.7314          | 0.5      |
| 0.6389        | 8.99  | 598  | 0.7380          | 0.5      |
| 0.6446        | 9.92  | 660  | 0.7426          | 0.5      |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3