--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - timit_asr metrics: - wer model-index: - name: wav2vec2-base-timit-fine-tuned results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: timit_asr type: timit_asr config: clean split: test args: clean metrics: - name: Wer type: wer value: 0.4359464627151052 --- # wav2vec2-base-timit-fine-tuned This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the timit_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.4279 - Wer: 0.4359 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 3.158 | 1.7241 | 100 | 3.6803 | 1.0 | | 2.9744 | 3.4483 | 200 | 3.1165 | 1.0 | | 2.9266 | 5.1724 | 300 | 3.0175 | 1.0 | | 2.1336 | 6.8966 | 400 | 2.2135 | 1.0117 | | 1.0119 | 8.6207 | 500 | 1.0227 | 0.8251 | | 0.4995 | 10.3448 | 600 | 0.7700 | 0.6574 | | 0.3233 | 12.0690 | 700 | 0.4970 | 0.5241 | | 0.2452 | 13.7931 | 800 | 0.4585 | 0.4908 | | 0.181 | 15.5172 | 900 | 0.4626 | 0.4814 | | 0.1419 | 17.2414 | 1000 | 0.4917 | 0.4775 | | 0.1175 | 18.9655 | 1100 | 0.4279 | 0.4359 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0a0+gitcd033a1 - Datasets 2.19.1 - Tokenizers 0.19.1