Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +356 -3
- config.json +27 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,356 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- multilingual
|
4 |
+
- af
|
5 |
+
- am
|
6 |
+
- ar
|
7 |
+
- as
|
8 |
+
- az
|
9 |
+
- be
|
10 |
+
- bg
|
11 |
+
- bn
|
12 |
+
- br
|
13 |
+
- bs
|
14 |
+
- ca
|
15 |
+
- cs
|
16 |
+
- cy
|
17 |
+
- da
|
18 |
+
- de
|
19 |
+
- el
|
20 |
+
- en
|
21 |
+
- eo
|
22 |
+
- es
|
23 |
+
- et
|
24 |
+
- eu
|
25 |
+
- fa
|
26 |
+
- fi
|
27 |
+
- fr
|
28 |
+
- fy
|
29 |
+
- ga
|
30 |
+
- gd
|
31 |
+
- gl
|
32 |
+
- gu
|
33 |
+
- ha
|
34 |
+
- he
|
35 |
+
- hi
|
36 |
+
- hr
|
37 |
+
- hu
|
38 |
+
- hy
|
39 |
+
- id
|
40 |
+
- is
|
41 |
+
- it
|
42 |
+
- ja
|
43 |
+
- jv
|
44 |
+
- ka
|
45 |
+
- kk
|
46 |
+
- km
|
47 |
+
- kn
|
48 |
+
- ko
|
49 |
+
- ku
|
50 |
+
- ky
|
51 |
+
- la
|
52 |
+
- lo
|
53 |
+
- lt
|
54 |
+
- lv
|
55 |
+
- mg
|
56 |
+
- mk
|
57 |
+
- ml
|
58 |
+
- mn
|
59 |
+
- mr
|
60 |
+
- ms
|
61 |
+
- my
|
62 |
+
- ne
|
63 |
+
- nl
|
64 |
+
- 'no'
|
65 |
+
- om
|
66 |
+
- or
|
67 |
+
- pa
|
68 |
+
- pl
|
69 |
+
- ps
|
70 |
+
- pt
|
71 |
+
- ro
|
72 |
+
- ru
|
73 |
+
- sa
|
74 |
+
- sd
|
75 |
+
- si
|
76 |
+
- sk
|
77 |
+
- sl
|
78 |
+
- so
|
79 |
+
- sq
|
80 |
+
- sr
|
81 |
+
- su
|
82 |
+
- sv
|
83 |
+
- sw
|
84 |
+
- ta
|
85 |
+
- te
|
86 |
+
- th
|
87 |
+
- tl
|
88 |
+
- tr
|
89 |
+
- ug
|
90 |
+
- uk
|
91 |
+
- ur
|
92 |
+
- uz
|
93 |
+
- vi
|
94 |
+
- xh
|
95 |
+
- yi
|
96 |
+
- zh
|
97 |
+
license: mit
|
98 |
+
library_name: sentence-transformers
|
99 |
+
tags:
|
100 |
+
- korean
|
101 |
+
- sentence-transformers
|
102 |
+
- transformers
|
103 |
+
- multilingual
|
104 |
+
- sentence-transformers
|
105 |
+
- sentence-similarity
|
106 |
+
- feature-extraction
|
107 |
+
base_model: intfloat/multilingual-e5-large
|
108 |
+
datasets: []
|
109 |
+
metrics:
|
110 |
+
- pearson_cosine
|
111 |
+
- spearman_cosine
|
112 |
+
- pearson_manhattan
|
113 |
+
- spearman_manhattan
|
114 |
+
- pearson_euclidean
|
115 |
+
- spearman_euclidean
|
116 |
+
- pearson_dot
|
117 |
+
- spearman_dot
|
118 |
+
- pearson_max
|
119 |
+
- spearman_max
|
120 |
+
widget:
|
121 |
+
- source_sentence: 이집트 군대가 형제애를 단속하다
|
122 |
+
sentences:
|
123 |
+
- 이집트의 군대가 무슬림 형제애를 단속하다
|
124 |
+
- 아르헨티나의 기예르모 코리아와 네덜란드의 마틴 버커크의 또 다른 준결승전도 매력적이다.
|
125 |
+
- 그것이 사실일 수도 있다고 생각하는 것은 재미있다.
|
126 |
+
- source_sentence: 오, 그리고 다시 결혼은 근본적인 인권이라고 주장한다.
|
127 |
+
sentences:
|
128 |
+
- 특히 결혼은 근본적인 인권이라고 말한 후에.
|
129 |
+
- 해변에 있는 흑인과 그의 개...
|
130 |
+
- 이란은 핵 프로그램이 평화적인 목적을 위한 것이라고 주장한다
|
131 |
+
- source_sentence: 조지 샤힌은 안데르센 컨설팅 사업부에서 일했다.
|
132 |
+
sentences:
|
133 |
+
- 112건의 퇴거를 예방하거나 미연에 방지하여 151,619달러의 피난처 비용과 그들이 실향민이 되었을 때 가족들이 겪는 혼란을 덜어주었다.
|
134 |
+
- 안데르센 컨설팅은 여전히 번창하는 사업이다.
|
135 |
+
- 이것은 내가 영국의 아서 안데르센 사업부의 파트너인 짐 와디아를 아서 안데르센 경영진이 선택한 것보다 래리 웨인바흐를 안데르센 월드와이드의
|
136 |
+
경영 파트너로 승계하기 위해 안데르센 컨설팅 사업부(현재의 엑센츄어라고 알려져 있음)의 전 관리 파트너인 조지 샤힌에 대한 지지를 표명했을
|
137 |
+
때 가장 명백했다.
|
138 |
+
- source_sentence: 그 표는 주요 경제 정보를 보여준다.
|
139 |
+
sentences:
|
140 |
+
- 표는 모집단 밀도를 나타냅니다.
|
141 |
+
- 아이들이 야외에서 놀고 있다.
|
142 |
+
- 표 3은 배출량 감소가 개인 소비와 국내총생산(GDP)의 다른 구성 요소에 미치는 영향을 비교하기 위해 2010년의 주요 거시경제 데이터를
|
143 |
+
요약한 것이다.
|
144 |
+
- source_sentence: 안경을 쓴 나이든 남자가 바닥에 누워 갓난아기와 장난감 소방차를 가지고 놀고 있다.
|
145 |
+
sentences:
|
146 |
+
- 긴 검은 머리와 초록색 탱크톱을 가진 남자가 손가락을 보고 있다.
|
147 |
+
- 안경을 쓴 남자는 원숭이이고 아기 원숭이와 놀고 있다.
|
148 |
+
- 안경을 쓴 남자가 바닥에 누워 놀고 있다.
|
149 |
+
pipeline_tag: sentence-similarity
|
150 |
+
model-index:
|
151 |
+
- name: upskyy/e5-large-korean
|
152 |
+
results:
|
153 |
+
- task:
|
154 |
+
type: semantic-similarity
|
155 |
+
name: Semantic Similarity
|
156 |
+
dataset:
|
157 |
+
name: sts dev
|
158 |
+
type: sts-dev
|
159 |
+
metrics:
|
160 |
+
- type: pearson_cosine
|
161 |
+
value: 0.8710078333363093
|
162 |
+
name: Pearson Cosine
|
163 |
+
- type: spearman_cosine
|
164 |
+
value: 0.8698788475177747
|
165 |
+
name: Spearman Cosine
|
166 |
+
- type: pearson_manhattan
|
167 |
+
value: 0.8598807479137434
|
168 |
+
name: Pearson Manhattan
|
169 |
+
- type: spearman_manhattan
|
170 |
+
value: 0.8682945370063891
|
171 |
+
name: Spearman Manhattan
|
172 |
+
- type: pearson_euclidean
|
173 |
+
value: 0.8596482760879562
|
174 |
+
name: Pearson Euclidean
|
175 |
+
- type: spearman_euclidean
|
176 |
+
value: 0.8679655812613122
|
177 |
+
name: Spearman Euclidean
|
178 |
+
- type: pearson_dot
|
179 |
+
value: 0.8684600033706916
|
180 |
+
name: Pearson Dot
|
181 |
+
- type: spearman_dot
|
182 |
+
value: 0.8668368265035578
|
183 |
+
name: Spearman Dot
|
184 |
+
- type: pearson_max
|
185 |
+
value: 0.8710078333363093
|
186 |
+
name: Pearson Max
|
187 |
+
- type: spearman_max
|
188 |
+
value: 0.8698788475177747
|
189 |
+
name: Spearman Max
|
190 |
+
---
|
191 |
+
|
192 |
+
# upskyy/e5-large-korean
|
193 |
+
|
194 |
+
This model is korsts and kornli finetuning model from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
195 |
+
|
196 |
+
## Model Details
|
197 |
+
|
198 |
+
### Model Description
|
199 |
+
- **Model Type:** Sentence Transformer
|
200 |
+
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision ab10c1a7f42e74530fe7ae5be82e6d4f11a719eb -->
|
201 |
+
- **Maximum Sequence Length:** 512 tokens
|
202 |
+
- **Output Dimensionality:** 1024 tokens
|
203 |
+
- **Similarity Function:** Cosine Similarity
|
204 |
+
<!-- - **Training Dataset:** Unknown -->
|
205 |
+
<!-- - **Language:** Unknown -->
|
206 |
+
<!-- - **License:** Unknown -->
|
207 |
+
|
208 |
+
### Full Model Architecture
|
209 |
+
|
210 |
+
```
|
211 |
+
SentenceTransformer(
|
212 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
213 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
214 |
+
)
|
215 |
+
```
|
216 |
+
|
217 |
+
## Usage
|
218 |
+
|
219 |
+
### Usage (Sentence-Transformers)
|
220 |
+
|
221 |
+
|
222 |
+
First install the Sentence Transformers library:
|
223 |
+
|
224 |
+
```bash
|
225 |
+
pip install -U sentence-transformers
|
226 |
+
```
|
227 |
+
|
228 |
+
Then you can load this model and run inference.
|
229 |
+
```python
|
230 |
+
from sentence_transformers import SentenceTransformer
|
231 |
+
|
232 |
+
# Download from the 🤗 Hub
|
233 |
+
model = SentenceTransformer("upskyy/e5-large-korean")
|
234 |
+
|
235 |
+
# Run inference
|
236 |
+
sentences = [
|
237 |
+
'아이를 가진 엄마가 해변을 걷는다.',
|
238 |
+
'두 사람이 해변을 걷는다.',
|
239 |
+
'한 남자가 해변에서 개를 산책시킨다.',
|
240 |
+
]
|
241 |
+
embeddings = model.encode(sentences)
|
242 |
+
print(embeddings.shape)
|
243 |
+
# [3, 1024]
|
244 |
+
|
245 |
+
# Get the similarity scores for the embeddings
|
246 |
+
similarities = model.similarity(embeddings, embeddings)
|
247 |
+
print(similarities.shape)
|
248 |
+
# [3, 3]
|
249 |
+
```
|
250 |
+
|
251 |
+
### Usage (HuggingFace Transformers)
|
252 |
+
|
253 |
+
Without sentence-transformers, you can use the model like this:
|
254 |
+
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
255 |
+
|
256 |
+
```python
|
257 |
+
from transformers import AutoTokenizer, AutoModel
|
258 |
+
import torch
|
259 |
+
|
260 |
+
|
261 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
262 |
+
def mean_pooling(model_output, attention_mask):
|
263 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
264 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
265 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
266 |
+
|
267 |
+
|
268 |
+
# Sentences we want sentence embeddings for
|
269 |
+
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
|
270 |
+
|
271 |
+
# Load model from HuggingFace Hub
|
272 |
+
tokenizer = AutoTokenizer.from_pretrained("upskyy/e5-large-korean")
|
273 |
+
model = AutoModel.from_pretrained("upskyy/e5-large-korean")
|
274 |
+
|
275 |
+
# Tokenize sentences
|
276 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
|
277 |
+
|
278 |
+
# Compute token embeddings
|
279 |
+
with torch.no_grad():
|
280 |
+
model_output = model(**encoded_input)
|
281 |
+
|
282 |
+
# Perform pooling. In this case, mean pooling.
|
283 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
|
284 |
+
|
285 |
+
print("Sentence embeddings:")
|
286 |
+
print(sentence_embeddings)
|
287 |
+
```
|
288 |
+
|
289 |
+
|
290 |
+
## Evaluation
|
291 |
+
|
292 |
+
### Metrics
|
293 |
+
|
294 |
+
#### Semantic Similarity
|
295 |
+
* Dataset: `sts-dev`
|
296 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
297 |
+
|
298 |
+
| Metric | Value |
|
299 |
+
| :----------------- | :--------- |
|
300 |
+
| pearson_cosine | 0.871 |
|
301 |
+
| spearman_cosine | 0.8699 |
|
302 |
+
| pearson_manhattan | 0.8599 |
|
303 |
+
| spearman_manhattan | 0.8683 |
|
304 |
+
| pearson_euclidean | 0.8596 |
|
305 |
+
| spearman_euclidean | 0.868 |
|
306 |
+
| pearson_dot | 0.8685 |
|
307 |
+
| spearman_dot | 0.8668 |
|
308 |
+
| **pearson_max** | **0.871** |
|
309 |
+
| **spearman_max** | **0.8699** |
|
310 |
+
|
311 |
+
<!--
|
312 |
+
## Bias, Risks and Limitations
|
313 |
+
|
314 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
315 |
+
-->
|
316 |
+
|
317 |
+
<!--
|
318 |
+
### Recommendations
|
319 |
+
|
320 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
321 |
+
-->
|
322 |
+
|
323 |
+
|
324 |
+
### Framework Versions
|
325 |
+
- Python: 3.10.13
|
326 |
+
- Sentence Transformers: 3.0.1
|
327 |
+
- Transformers: 4.42.4
|
328 |
+
- PyTorch: 2.3.0+cu121
|
329 |
+
- Accelerate: 0.30.1
|
330 |
+
- Datasets: 2.16.1
|
331 |
+
- Tokenizers: 0.19.1
|
332 |
+
|
333 |
+
## Citation
|
334 |
+
|
335 |
+
### BibTeX
|
336 |
+
|
337 |
+
```bibtex
|
338 |
+
@article{wang2024multilingual,
|
339 |
+
title={Multilingual E5 Text Embeddings: A Technical Report},
|
340 |
+
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
|
341 |
+
journal={arXiv preprint arXiv:2402.05672},
|
342 |
+
year={2024}
|
343 |
+
}
|
344 |
+
```
|
345 |
+
|
346 |
+
```bibtex
|
347 |
+
@inproceedings{reimers-2019-sentence-bert,
|
348 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
349 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
350 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
351 |
+
month = "11",
|
352 |
+
year = "2019",
|
353 |
+
publisher = "Association for Computational Linguistics",
|
354 |
+
url = "https://arxiv.org/abs/1908.10084",
|
355 |
+
}
|
356 |
+
```
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"XLMRobertaModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 514,
|
16 |
+
"model_type": "xlm-roberta",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"output_past": true,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.42.4",
|
24 |
+
"type_vocab_size": 1,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 250002
|
27 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d85f779ad4259caa8459b18582d9682b45c622b5684bbb61c51863b30cff7184
|
3 |
+
size 2239607176
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
53 |
+
"unk_token": "<unk>"
|
54 |
+
}
|