vdaita commited on
Commit
e1c0be6
1 Parent(s): fd129d9

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,143 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: peft
4
+ tags:
5
+ - generated_from_trainer
6
+ base_model: mistralai/Mistral-7B-v0.3
7
+ model-index:
8
+ - name: outputs/axolotl-qlora-out-line
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.0`
19
+ ```yaml
20
+ base_model: mistralai/Mistral-7B-v0.3
21
+ model_type: MistralForCausalLM
22
+ tokenizer_type: LlamaTokenizer
23
+
24
+ load_in_8bit: true
25
+ load_in_4bit: false
26
+ strict: false
27
+
28
+ datasets:
29
+ - path: vdaita/editpackft_inst_line
30
+ type: oasst
31
+ dataset_prepared_path:
32
+ val_set_size: 0.05
33
+ output_dir: ./outputs/axolotl-qlora-out-line
34
+
35
+ adapter: lora
36
+ lora_model_dir:
37
+
38
+ sequence_len: 2048
39
+ sample_packing: true
40
+ eval_sample_packing: false
41
+ pad_to_sequence_len: true
42
+
43
+ lora_r: 32
44
+ lora_alpha: 16
45
+ lora_dropout: 0.05
46
+ lora_target_modules:
47
+ lora_target_linear: true
48
+ lora_fan_in_fan_out:
49
+
50
+ wandb_project: huggingface
51
+ wandb_log_model: axolotl-qlora-line-mistral
52
+
53
+ gradient_accumulation_steps: 4
54
+ micro_batch_size: 2
55
+ num_epochs: 4
56
+ optimizer: paged_adamw_32bit
57
+ lr_scheduler: cosine
58
+ learning_rate: 0.0002
59
+
60
+ train_on_inputs: false
61
+ group_by_length: false
62
+ bf16: auto
63
+ fp16:
64
+ tf32: false
65
+
66
+ gradient_checkpointing: true
67
+ logging_steps: 1
68
+ flash_attention: true
69
+
70
+ warmup_steps: 10
71
+ evals_per_epoch: 4
72
+ saves_per_epoch: 1
73
+
74
+ ```
75
+
76
+ </details><br>
77
+
78
+ # outputs/axolotl-qlora-out-line
79
+
80
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the None dataset.
81
+ It achieves the following results on the evaluation set:
82
+ - Loss: 0.2883
83
+
84
+ ## Model description
85
+
86
+ More information needed
87
+
88
+ ## Intended uses & limitations
89
+
90
+ More information needed
91
+
92
+ ## Training and evaluation data
93
+
94
+ More information needed
95
+
96
+ ## Training procedure
97
+
98
+ ### Training hyperparameters
99
+
100
+ The following hyperparameters were used during training:
101
+ - learning_rate: 0.0002
102
+ - train_batch_size: 2
103
+ - eval_batch_size: 2
104
+ - seed: 42
105
+ - distributed_type: multi-GPU
106
+ - num_devices: 2
107
+ - gradient_accumulation_steps: 4
108
+ - total_train_batch_size: 16
109
+ - total_eval_batch_size: 4
110
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
111
+ - lr_scheduler_type: cosine
112
+ - lr_scheduler_warmup_steps: 10
113
+ - num_epochs: 4
114
+
115
+ ### Training results
116
+
117
+ | Training Loss | Epoch | Step | Validation Loss |
118
+ |:-------------:|:-----:|:----:|:---------------:|
119
+ | 0.847 | 0.01 | 1 | 0.9975 |
120
+ | 0.3533 | 0.26 | 20 | 0.2772 |
121
+ | 0.299 | 0.52 | 40 | 0.2501 |
122
+ | 0.2288 | 0.77 | 60 | 0.2439 |
123
+ | 0.334 | 1.01 | 80 | 0.2394 |
124
+ | 0.3017 | 1.27 | 100 | 0.2399 |
125
+ | 0.2394 | 1.53 | 120 | 0.2416 |
126
+ | 0.2261 | 1.78 | 140 | 0.2400 |
127
+ | 0.177 | 2.02 | 160 | 0.2388 |
128
+ | 0.1911 | 2.28 | 180 | 0.2557 |
129
+ | 0.1884 | 2.54 | 200 | 0.2601 |
130
+ | 0.1516 | 2.79 | 220 | 0.2627 |
131
+ | 0.1545 | 3.03 | 240 | 0.2628 |
132
+ | 0.092 | 3.29 | 260 | 0.2915 |
133
+ | 0.1251 | 3.55 | 280 | 0.2892 |
134
+ | 0.109 | 3.8 | 300 | 0.2883 |
135
+
136
+
137
+ ### Framework versions
138
+
139
+ - PEFT 0.10.0
140
+ - Transformers 4.40.0.dev0
141
+ - Pytorch 2.3.0+cu121
142
+ - Datasets 2.15.0
143
+ - Tokenizers 0.15.0
adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "mistralai/Mistral-7B-v0.3",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 32,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "gate_proj",
24
+ "v_proj",
25
+ "up_proj",
26
+ "down_proj",
27
+ "q_proj",
28
+ "o_proj",
29
+ "k_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af535014beb0051f4700a29e704b44e49328a08b621eaf0ab98d5d17d3a40b0a
3
+ size 335706186
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mistralai/Mistral-7B-v0.3",
3
+ "architectures": [
4
+ "MistralForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 1,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 4096,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 14336,
13
+ "max_position_embeddings": 32768,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 32,
17
+ "num_key_value_heads": 8,
18
+ "quantization_config": {
19
+ "_load_in_4bit": false,
20
+ "_load_in_8bit": true,
21
+ "bnb_4bit_compute_dtype": "float32",
22
+ "bnb_4bit_quant_storage": "uint8",
23
+ "bnb_4bit_quant_type": "fp4",
24
+ "bnb_4bit_use_double_quant": false,
25
+ "llm_int8_enable_fp32_cpu_offload": false,
26
+ "llm_int8_has_fp16_weight": false,
27
+ "llm_int8_skip_modules": null,
28
+ "llm_int8_threshold": 6.0,
29
+ "load_in_4bit": false,
30
+ "load_in_8bit": true,
31
+ "quant_method": "bitsandbytes"
32
+ },
33
+ "rms_norm_eps": 1e-05,
34
+ "rope_theta": 1000000.0,
35
+ "sliding_window": null,
36
+ "tie_word_embeddings": false,
37
+ "torch_dtype": "bfloat16",
38
+ "transformers_version": "4.40.0.dev0",
39
+ "use_cache": false,
40
+ "vocab_size": 32768
41
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f00374dea48658ee8f5d0f21895b9bc55cb0103939607c8185bfd1c6ca1f89
3
+ size 587404
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff