---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.3
model-index:
- name: outputs/axolotl-qlora-out-line
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.3
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: vdaita/editpackft_inst_line
type: oasst
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/axolotl-qlora-out-line
adapter: lora
lora_model_dir:
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: huggingface
wandb_log_model: axolotl-qlora-line-mistral
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
```
# outputs/axolotl-qlora-out-line
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.3](https://huggingface.co/mistralai/Mistral-7B-v0.3) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2883
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.847 | 0.01 | 1 | 0.9975 |
| 0.3533 | 0.26 | 20 | 0.2772 |
| 0.299 | 0.52 | 40 | 0.2501 |
| 0.2288 | 0.77 | 60 | 0.2439 |
| 0.334 | 1.01 | 80 | 0.2394 |
| 0.3017 | 1.27 | 100 | 0.2399 |
| 0.2394 | 1.53 | 120 | 0.2416 |
| 0.2261 | 1.78 | 140 | 0.2400 |
| 0.177 | 2.02 | 160 | 0.2388 |
| 0.1911 | 2.28 | 180 | 0.2557 |
| 0.1884 | 2.54 | 200 | 0.2601 |
| 0.1516 | 2.79 | 220 | 0.2627 |
| 0.1545 | 3.03 | 240 | 0.2628 |
| 0.092 | 3.29 | 260 | 0.2915 |
| 0.1251 | 3.55 | 280 | 0.2892 |
| 0.109 | 3.8 | 300 | 0.2883 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0