File size: 11,827 Bytes
2f760fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"""
we introduce a temporal interpolation network to enhance the smoothness of generated videos and synthesize richer temporal details.
This network takes a 16-frame base video as input and produces an upsampled output consisting of 61 frames.
"""

import os
import sys
import math
try:
	import utils

	from diffusion import create_diffusion
	from download import find_model
except:
	sys.path.append(os.path.split(sys.path[0])[0])
	
	import utils

	from diffusion import create_diffusion
	from download import find_model

import torch
import argparse
import torchvision

from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from torchvision import transforms
sys.path.append("..")
from datasets import video_transforms
from decord import VideoReader
from utils import mask_generation, mask_generation_before
from natsort import natsorted
from diffusers.utils.import_utils import is_xformers_available

torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True


def get_input(args):
	input_path = args.input_path
	transform_video = transforms.Compose([
			video_transforms.ToTensorVideo(), # TCHW
			# video_transforms.CenterCropResizeVideo((args.image_h, args.image_w)),
			video_transforms.ResizeVideo((args.image_h, args.image_w)),
			transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
		])
	temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
	if input_path is not None:
		print(f'loading video from {input_path}')
		if os.path.isdir(input_path):
			file_list = os.listdir(input_path)
			video_frames = []
			for file in file_list:
				if file.endswith('jpg') or file.endswith('png'):
					image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0)
					video_frames.append(image)
				else:
					continue
			n = 0
			video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
			video_frames = transform_video(video_frames)
			return video_frames, n
		elif os.path.isfile(input_path):
			_, full_file_name = os.path.split(input_path)
			file_name, extention = os.path.splitext(full_file_name)
			if extention == '.mp4':
				video_reader = VideoReader(input_path)
				total_frames = len(video_reader)
				start_frame_ind, end_frame_ind = temporal_sample_func(total_frames)
				frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int)
				video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
				video_frames = transform_video(video_frames)
				n = 3
				del video_reader
				return video_frames, n
			else:
				raise TypeError(f'{extention} is not supported !!')
		else:
			raise ValueError('Please check your path input!!')
	else:
		print('given video is None, using text to video')
		video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
		args.mask_type = 'all'
		video_frames = transform_video(video_frames)
		n = 0
		return video_frames, n


def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
	
	
	b,f,c,h,w=video_input.shape
	latent_h = args.image_size[0] // 8
	latent_w = args.image_size[1] // 8

	z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w

	masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
	masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
	masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
	mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
	

	masked_video = torch.cat([masked_video] * 2) if args.do_classifier_free_guidance else masked_video
	mask = torch.cat([mask] * 2) if args.do_classifier_free_guidance else mask
	z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z

	prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt]
	text_prompt = text_encoder(text_prompts=prompt_all, train=False)
	model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None)

	if args.use_ddim_sample_loop:
		samples = diffusion.ddim_sample_loop(
			model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
			progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat
		)
	else:
		samples = diffusion.p_sample_loop(
			model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
				progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat
		) # torch.Size([2, 4, 16, 32, 32])
	samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]

	video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
	video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
	return video_clip


def auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,):

	b,f,c,h,w=video_input.shape
	latent_h = args.image_size[0] // 8
	latent_w = args.image_size[1] // 8

	video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous()
	video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215)
	video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous()

	lr_indice = torch.IntTensor([i for i in range(0,62,4)]).to(device)
	copied_video = torch.index_select(video_input, 2, lr_indice)
	copied_video = torch.repeat_interleave(copied_video, 4, dim=2)
	copied_video = copied_video[:,:,1:-2,:,:]
	copied_video = torch.cat([copied_video] * 2) if args.do_classifier_free_guidance else copied_video

	torch.manual_seed(args.seed)
	torch.cuda.manual_seed(args.seed)
	z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
	z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z
	
	prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt]
	text_prompt = text_encoder(text_prompts=prompt_all, train=False)
	model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None)

	torch.manual_seed(args.seed)
	torch.cuda.manual_seed(args.seed)
	if args.use_ddim_sample_loop:
		samples = diffusion.ddim_sample_loop(
			model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
			progress=True, device=device, mask=None, x_start=copied_video, use_concat=args.use_concat, copy_no_mask=args.copy_no_mask,
		)
	else:
		raise ValueError(f'We only have ddim sampling implementation for now')

	samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]

	video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
	video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
	return video_clip



def main(args):

	for seed in args.seed_list:

		args.seed = seed
		torch.manual_seed(args.seed)
		torch.cuda.manual_seed(args.seed)
		# print(f'torch.seed() = {torch.seed()}')

		print('sampling begins')
		torch.set_grad_enabled(False)
		device = "cuda" if torch.cuda.is_available() else "cpu"
		# device = "cpu"
		
		ckpt_path = args.pretrained_path + "/lavie_interpolation.pt"
		sd_path = args.pretrained_path + "/stable-diffusion-v1-4"	
		for ckpt in [ckpt_path]:

			ckpt_num = str(ckpt_path).zfill(7)

			# Load model:
			latent_h = args.image_size[0] // 8
			latent_w = args.image_size[1] // 8
			args.image_h = args.image_size[0]
			args.image_w = args.image_size[1]
			args.latent_h = latent_h
			args.latent_w = latent_w
			print(f'args.copy_no_mask = {args.copy_no_mask}')
			model = get_models(args, sd_path).to(device)

			if args.use_compile:
				model = torch.compile(model)
			if args.enable_xformers_memory_efficient_attention:
				if is_xformers_available():
					model.enable_xformers_memory_efficient_attention()
					# model.enable_vae_slicing() # ziqi added
				else:
					raise ValueError("xformers is not available. Make sure it is installed correctly")

			# Auto-download a pre-trained model or load a custom checkpoint from train.py:
			print(f'loading model from {ckpt_path}')
			
			# load ckpt
			state_dict = find_model(ckpt_path)

			print(f'state_dict["conv_in.weight"].shape = {state_dict["conv_in.weight"].shape}') # [320, 8, 3, 3]
			print('loading succeed')
			# model.load_state_dict(state_dict)

			torch.manual_seed(args.seed)
			torch.cuda.manual_seed(args.seed)

			model.eval()  # important!
			diffusion = create_diffusion(str(args.num_sampling_steps))
			vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(device)
			text_encoder = TextEmbedder(sd_path).to(device)

			video_list = os.listdir(args.input_folder)
			args.input_path_list = [os.path.join(args.input_folder, video) for video in video_list]
			for input_path in args.input_path_list:

				args.input_path = input_path

				print(f'=======================================')
				if not args.input_path.endswith('.mp4'):
					print(f'Skipping {args.input_path}')
					continue
					
				print(f'args.input_path = {args.input_path}')

				torch.manual_seed(args.seed)
				torch.cuda.manual_seed(args.seed)				 

				# Labels to condition the model with (feel free to change):
				video_name = args.input_path.split('/')[-1].split('.mp4')[0]
				args.prompt = [video_name]
				print(f'args.prompt = {args.prompt}')
				prompts = args.prompt
				class_name = [p + args.additional_prompt for p in prompts]

				if not os.path.exists(os.path.join(args.output_folder)):
					os.makedirs(os.path.join(args.output_folder))
				video_input, researve_frames = get_input(args) # f,c,h,w
				video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w
				if args.copy_no_mask:
					pass
				else:
					mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w

				if args.copy_no_mask:
					pass
				else:
					if args.mask_type == 'tsr':
						masked_video = video_input * (mask == 0)
					else:
						masked_video = video_input * (mask == 0)

				all_video = []
				if researve_frames != 0:
					all_video.append(video_input)
				for idx, prompt in enumerate(class_name):
					if idx == 0:
						if args.copy_no_mask:
							video_clip = auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,)
							video_clip_ = video_clip.unsqueeze(0)
							all_video.append(video_clip_)
						else:
							video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
							video_clip_ = video_clip.unsqueeze(0)
							all_video.append(video_clip_)
					else:
						raise NotImplementedError
						masked_video = video_input * (mask == 0)
						video_clip = auto_inpainting_copy_no_mask(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
						video_clip_ = video_clip.unsqueeze(0)
						all_video.append(video_clip_[:, 3:])
					video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
					for fps in args.fps_list:
						save_path = args.output_folder
						if not os.path.exists(os.path.join(save_path)):
							os.makedirs(os.path.join(save_path))
						local_save_path = os.path.join(save_path, f'{video_name}.mp4')
						print(f'save in {local_save_path}')
						torchvision.io.write_video(local_save_path, video_, fps=fps)
			


if __name__ == "__main__":
	parser = argparse.ArgumentParser()
	parser.add_argument("--config", type=str, required=True)
	args = parser.parse_args()
	main(**OmegaConf.load(args.config))