File size: 11,827 Bytes
2f760fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
"""
we introduce a temporal interpolation network to enhance the smoothness of generated videos and synthesize richer temporal details.
This network takes a 16-frame base video as input and produces an upsampled output consisting of 61 frames.
"""
import os
import sys
import math
try:
import utils
from diffusion import create_diffusion
from download import find_model
except:
sys.path.append(os.path.split(sys.path[0])[0])
import utils
from diffusion import create_diffusion
from download import find_model
import torch
import argparse
import torchvision
from einops import rearrange
from models import get_models
from torchvision.utils import save_image
from diffusers.models import AutoencoderKL
from models.clip import TextEmbedder
from omegaconf import OmegaConf
from PIL import Image
import numpy as np
from torchvision import transforms
sys.path.append("..")
from datasets import video_transforms
from decord import VideoReader
from utils import mask_generation, mask_generation_before
from natsort import natsorted
from diffusers.utils.import_utils import is_xformers_available
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def get_input(args):
input_path = args.input_path
transform_video = transforms.Compose([
video_transforms.ToTensorVideo(), # TCHW
# video_transforms.CenterCropResizeVideo((args.image_h, args.image_w)),
video_transforms.ResizeVideo((args.image_h, args.image_w)),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)
])
temporal_sample_func = video_transforms.TemporalRandomCrop(args.num_frames * args.frame_interval)
if input_path is not None:
print(f'loading video from {input_path}')
if os.path.isdir(input_path):
file_list = os.listdir(input_path)
video_frames = []
for file in file_list:
if file.endswith('jpg') or file.endswith('png'):
image = torch.as_tensor(np.array(Image.open(file), dtype=np.uint8, copy=True)).unsqueeze(0)
video_frames.append(image)
else:
continue
n = 0
video_frames = torch.cat(video_frames, dim=0).permute(0, 3, 1, 2) # f,c,h,w
video_frames = transform_video(video_frames)
return video_frames, n
elif os.path.isfile(input_path):
_, full_file_name = os.path.split(input_path)
file_name, extention = os.path.splitext(full_file_name)
if extention == '.mp4':
video_reader = VideoReader(input_path)
total_frames = len(video_reader)
start_frame_ind, end_frame_ind = temporal_sample_func(total_frames)
frame_indice = np.linspace(start_frame_ind, end_frame_ind-1, args.num_frames, dtype=int)
video_frames = torch.from_numpy(video_reader.get_batch(frame_indice).asnumpy()).permute(0, 3, 1, 2).contiguous()
video_frames = transform_video(video_frames)
n = 3
del video_reader
return video_frames, n
else:
raise TypeError(f'{extention} is not supported !!')
else:
raise ValueError('Please check your path input!!')
else:
print('given video is None, using text to video')
video_frames = torch.zeros(16,3,args.latent_h,args.latent_w,dtype=torch.uint8)
args.mask_type = 'all'
video_frames = transform_video(video_frames)
n = 0
return video_frames, n
def auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,):
b,f,c,h,w=video_input.shape
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
masked_video = rearrange(masked_video, 'b f c h w -> (b f) c h w').contiguous()
masked_video = vae.encode(masked_video).latent_dist.sample().mul_(0.18215)
masked_video = rearrange(masked_video, '(b f) c h w -> b c f h w', b=b).contiguous()
mask = torch.nn.functional.interpolate(mask[:,:,0,:], size=(latent_h, latent_w)).unsqueeze(1)
masked_video = torch.cat([masked_video] * 2) if args.do_classifier_free_guidance else masked_video
mask = torch.cat([mask] * 2) if args.do_classifier_free_guidance else mask
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None)
if args.use_ddim_sample_loop:
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat
)
else:
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
progress=True, device=device, mask=mask, x_start=masked_video, use_concat=args.use_concat
) # torch.Size([2, 4, 16, 32, 32])
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
def auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,):
b,f,c,h,w=video_input.shape
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
video_input = rearrange(video_input, 'b f c h w -> (b f) c h w').contiguous()
video_input = vae.encode(video_input).latent_dist.sample().mul_(0.18215)
video_input = rearrange(video_input, '(b f) c h w -> b c f h w', b=b).contiguous()
lr_indice = torch.IntTensor([i for i in range(0,62,4)]).to(device)
copied_video = torch.index_select(video_input, 2, lr_indice)
copied_video = torch.repeat_interleave(copied_video, 4, dim=2)
copied_video = copied_video[:,:,1:-2,:,:]
copied_video = torch.cat([copied_video] * 2) if args.do_classifier_free_guidance else copied_video
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
z = torch.randn(1, 4, args.num_frames, args.latent_h, args.latent_w, device=device) # b,c,f,h,w
z = torch.cat([z] * 2) if args.do_classifier_free_guidance else z
prompt_all = [prompt] + [args.negative_prompt] if args.do_classifier_free_guidance else [prompt]
text_prompt = text_encoder(text_prompts=prompt_all, train=False)
model_kwargs = dict(encoder_hidden_states=text_prompt, class_labels=None)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.use_ddim_sample_loop:
samples = diffusion.ddim_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, \
progress=True, device=device, mask=None, x_start=copied_video, use_concat=args.use_concat, copy_no_mask=args.copy_no_mask,
)
else:
raise ValueError(f'We only have ddim sampling implementation for now')
samples, _ = samples.chunk(2, dim=0) # [1, 4, 16, 32, 32]
video_clip = samples[0].permute(1, 0, 2, 3).contiguous() # [16, 4, 32, 32]
video_clip = vae.decode(video_clip / 0.18215).sample # [16, 3, 256, 256]
return video_clip
def main(args):
for seed in args.seed_list:
args.seed = seed
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# print(f'torch.seed() = {torch.seed()}')
print('sampling begins')
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
# device = "cpu"
ckpt_path = args.pretrained_path + "/lavie_interpolation.pt"
sd_path = args.pretrained_path + "/stable-diffusion-v1-4"
for ckpt in [ckpt_path]:
ckpt_num = str(ckpt_path).zfill(7)
# Load model:
latent_h = args.image_size[0] // 8
latent_w = args.image_size[1] // 8
args.image_h = args.image_size[0]
args.image_w = args.image_size[1]
args.latent_h = latent_h
args.latent_w = latent_w
print(f'args.copy_no_mask = {args.copy_no_mask}')
model = get_models(args, sd_path).to(device)
if args.use_compile:
model = torch.compile(model)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
model.enable_xformers_memory_efficient_attention()
# model.enable_vae_slicing() # ziqi added
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Auto-download a pre-trained model or load a custom checkpoint from train.py:
print(f'loading model from {ckpt_path}')
# load ckpt
state_dict = find_model(ckpt_path)
print(f'state_dict["conv_in.weight"].shape = {state_dict["conv_in.weight"].shape}') # [320, 8, 3, 3]
print('loading succeed')
# model.load_state_dict(state_dict)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
model.eval() # important!
diffusion = create_diffusion(str(args.num_sampling_steps))
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae").to(device)
text_encoder = TextEmbedder(sd_path).to(device)
video_list = os.listdir(args.input_folder)
args.input_path_list = [os.path.join(args.input_folder, video) for video in video_list]
for input_path in args.input_path_list:
args.input_path = input_path
print(f'=======================================')
if not args.input_path.endswith('.mp4'):
print(f'Skipping {args.input_path}')
continue
print(f'args.input_path = {args.input_path}')
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
# Labels to condition the model with (feel free to change):
video_name = args.input_path.split('/')[-1].split('.mp4')[0]
args.prompt = [video_name]
print(f'args.prompt = {args.prompt}')
prompts = args.prompt
class_name = [p + args.additional_prompt for p in prompts]
if not os.path.exists(os.path.join(args.output_folder)):
os.makedirs(os.path.join(args.output_folder))
video_input, researve_frames = get_input(args) # f,c,h,w
video_input = video_input.to(device).unsqueeze(0) # b,f,c,h,w
if args.copy_no_mask:
pass
else:
mask = mask_generation_before(args.mask_type, video_input.shape, video_input.dtype, device) # b,f,c,h,w
if args.copy_no_mask:
pass
else:
if args.mask_type == 'tsr':
masked_video = video_input * (mask == 0)
else:
masked_video = video_input * (mask == 0)
all_video = []
if researve_frames != 0:
all_video.append(video_input)
for idx, prompt in enumerate(class_name):
if idx == 0:
if args.copy_no_mask:
video_clip = auto_inpainting_copy_no_mask(args, video_input, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_)
else:
video_clip = auto_inpainting(args, video_input, masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_)
else:
raise NotImplementedError
masked_video = video_input * (mask == 0)
video_clip = auto_inpainting_copy_no_mask(args, video_clip.unsqueeze(0), masked_video, mask, prompt, vae, text_encoder, diffusion, model, device,)
video_clip_ = video_clip.unsqueeze(0)
all_video.append(video_clip_[:, 3:])
video_ = ((video_clip * 0.5 + 0.5) * 255).add_(0.5).clamp_(0, 255).to(dtype=torch.uint8).cpu().permute(0, 2, 3, 1)
for fps in args.fps_list:
save_path = args.output_folder
if not os.path.exists(os.path.join(save_path)):
os.makedirs(os.path.join(save_path))
local_save_path = os.path.join(save_path, f'{video_name}.mp4')
print(f'save in {local_save_path}')
torchvision.io.write_video(local_save_path, video_, fps=fps)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, required=True)
args = parser.parse_args()
main(**OmegaConf.load(args.config))
|