|
|
|
import os |
|
import sys |
|
sys.path.append(os.path.split(sys.path[0])[0]) |
|
|
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import math |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.models.attention import FeedForward, AdaLayerNorm |
|
|
|
from einops import rearrange, repeat |
|
|
|
try: |
|
from diffusers.models.modeling_utils import ModelMixin |
|
except: |
|
from diffusers.modeling_utils import ModelMixin |
|
|
|
|
|
@dataclass |
|
class Transformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
r""" |
|
copy from diffuser 0.11.1 |
|
A cross attention layer. |
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
use_relative_position: bool = False, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
|
|
self.scale = dim_head**-0.5 |
|
|
|
self.heads = heads |
|
self.dim_head = dim_head |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
self._slice_size = None |
|
self._use_memory_efficient_attention_xformers = False |
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) |
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
|
|
self.use_relative_position = use_relative_position |
|
if self.use_relative_position: |
|
|
|
|
|
|
|
self.max_position_embeddings = 32 |
|
self.distance_embedding = nn.Embedding(2 * self.max_position_embeddings - 1, dim_head) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def reshape_for_scores(self, tensor): |
|
|
|
|
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
return tensor |
|
|
|
def same_batch_dim_to_heads(self, tensor): |
|
batch_size, head_size, seq_len, dim = tensor.shape |
|
tensor = tensor.reshape(batch_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and slice_size > self.sliceable_head_dim: |
|
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") |
|
|
|
self._slice_size = slice_size |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
|
|
|
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
|
|
|
|
if self.added_kv_proj_dim is not None: |
|
key = self.to_k(hidden_states) |
|
value = self.to_v(hidden_states) |
|
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
|
|
def _attention(self, query, key, value, attention_mask=None): |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
if self.use_relative_position: |
|
query = self.reshape_for_scores(self.reshape_batch_dim_to_heads(query)) |
|
key = self.reshape_for_scores(self.reshape_batch_dim_to_heads(key)) |
|
value = self.reshape_for_scores(self.reshape_batch_dim_to_heads(value)) |
|
|
|
|
|
|
|
attention_scores = self.scale * torch.matmul(query, key.transpose(-1, -2)) |
|
|
|
|
|
|
|
|
|
query_length, key_length = query.shape[2], key.shape[2] |
|
|
|
|
|
position_ids_l = torch.arange(query_length, dtype=torch.long, device=query.device).view(-1, 1) |
|
position_ids_r = torch.arange(key_length, dtype=torch.long, device=key.device).view(1, -1) |
|
distance = position_ids_l - position_ids_r |
|
|
|
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) |
|
positional_embedding = positional_embedding.to(dtype=query.dtype) |
|
|
|
relative_position_scores_query = torch.einsum("bhld, lrd -> bhlr", query, positional_embedding) |
|
relative_position_scores_key = torch.einsum("bhrd, lrd -> bhlr", key, positional_embedding) |
|
|
|
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key |
|
|
|
|
|
attention_scores = attention_scores / math.sqrt(self.dim_head) |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
attention_probs = attention_probs.to(value.dtype) |
|
|
|
|
|
hidden_states = torch.matmul(attention_probs, value) |
|
|
|
hidden_states = self.same_batch_dim_to_heads(hidden_states) |
|
|
|
|
|
|
|
else: |
|
attention_scores = torch.baddbmm( |
|
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), |
|
query, |
|
key.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_scores = attention_scores + attention_mask |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
|
|
|
|
|
|
attention_probs = attention_probs.to(value.dtype) |
|
|
|
|
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
|
|
|
|
return hidden_states |
|
|
|
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): |
|
batch_size_attention = query.shape[0] |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype |
|
) |
|
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] |
|
for i in range(hidden_states.shape[0] // slice_size): |
|
start_idx = i * slice_size |
|
end_idx = (i + 1) * slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
|
|
if self.upcast_attention: |
|
query_slice = query_slice.float() |
|
key_slice = key_slice.float() |
|
|
|
attn_slice = torch.baddbmm( |
|
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), |
|
query_slice, |
|
key_slice.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
if attention_mask is not None: |
|
attn_slice = attn_slice + attention_mask[start_idx:end_idx] |
|
|
|
if self.upcast_softmax: |
|
attn_slice = attn_slice.float() |
|
|
|
attn_slice = attn_slice.softmax(dim=-1) |
|
|
|
|
|
attn_slice = attn_slice.to(value.dtype) |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): |
|
|
|
query = query.contiguous() |
|
key = key.contiguous() |
|
value = value.contiguous() |
|
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) |
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class Transformer3DModel(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
use_first_frame: bool = False, |
|
use_relative_position: bool = False, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
if use_linear_projection: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
use_first_frame=use_first_frame, |
|
use_relative_position=use_relative_position, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
if use_linear_projection: |
|
self.proj_out = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): |
|
|
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
video_length = hidden_states.shape[2] |
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") |
|
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) |
|
|
|
batch, channel, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep=timestep, |
|
video_length=video_length |
|
) |
|
|
|
|
|
if not self.use_linear_projection: |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
|
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) |
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer3DModelOutput(sample=output) |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
use_first_frame: bool = False, |
|
use_relative_position: bool = False, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
|
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None |
|
self.use_first_frame = use_first_frame |
|
|
|
|
|
if use_first_frame: |
|
self.attn1 = SparseCausalAttention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
|
|
else: |
|
self.attn1 = CrossAttention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=None, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
self.attn2 = CrossAttention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
if cross_attention_dim is not None: |
|
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.norm3 = nn.LayerNorm(dim) |
|
|
|
|
|
self.attn_temp = CrossAttention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
use_relative_position=use_relative_position |
|
) |
|
nn.init.zeros_(self.attn_temp.to_out[0].weight.data) |
|
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) |
|
|
|
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op=None): |
|
if not is_xformers_available(): |
|
print("Here is how to install it") |
|
raise ModuleNotFoundError( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers", |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" |
|
" available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers |
|
if self.attn2 is not None: |
|
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers |
|
|
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None): |
|
|
|
norm_hidden_states = ( |
|
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) |
|
) |
|
|
|
if self.only_cross_attention: |
|
hidden_states = ( |
|
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states |
|
) |
|
else: |
|
if self.use_first_frame: |
|
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states |
|
else: |
|
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states |
|
|
|
if self.attn2 is not None: |
|
|
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
hidden_states = ( |
|
self.attn2( |
|
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask |
|
) |
|
+ hidden_states |
|
) |
|
|
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
|
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) |
|
norm_hidden_states = ( |
|
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states) |
|
) |
|
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states |
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |
|
|
|
|
|
class SparseCausalAttention(CrossAttention): |
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
former_frame_index = torch.arange(video_length) - 1 |
|
former_frame_index[0] = 0 |
|
|
|
key = rearrange(key, "(b f) d c -> b f d c", f=video_length) |
|
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2) |
|
key = rearrange(key, "b f d c -> (b f) d c") |
|
|
|
value = rearrange(value, "(b f) d c -> b f d c", f=video_length) |
|
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2) |
|
value = rearrange(value, "b f d c -> (b f) d c") |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
return hidden_states |
|
|