import gradio as gr
from text_to_video import model_t2v_fun,setup_seed
from omegaconf import OmegaConf
import torch
import imageio
import os
import cv2
import pandas as pd
import torchvision
import random
from huggingface_hub import snapshot_download
config_path = "./base/configs/sample.yaml"
args = OmegaConf.load("./base/configs/sample.yaml")
device = "cuda" if torch.cuda.is_available() else "cpu"
### download models
# snapshot_download('Vchitect/LaVie',cache_dir='./pretrained_models')
# snapshot_download('CompVis/stable-diffusion-v1-4',cache_dir='./pretrained_models')
# ------- get model ---------------
model_t2V = model_t2v_fun(args)
model_t2V.to(device)
if device == "cuda":
model_t2V.enable_xformers_memory_efficient_attention()
# model_t2V.enable_xformers_memory_efficient_attention()
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
def infer(prompt, seed_inp, ddim_steps,cfg):
if seed_inp!=-1:
setup_seed(seed_inp)
else:
seed_inp = random.choice(range(10000000))
setup_seed(seed_inp)
videos = model_t2V(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video
print(videos[0].shape)
if not os.path.exists(args.output_folder):
os.mkdir(args.output_folder)
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8)
# imageio.mimwrite(args.output_folder + prompt.replace(' ', '_') + '.mp4', videos[0], fps=8)
# video = cv2.VideoCapture(args.output_folder + prompt.replace(' ', '_') + '.mp4')
# video = imageio.get_reader(args.output_folder + prompt.replace(' ', '_') + '.mp4', 'ffmpeg')
# video = model_t2V(prompt, seed_inp, ddim_steps)
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
print(1)
# def clean():
# return gr.Image.update(value=None, visible=False), gr.Video.update(value=None)
def clean():
return gr.Video.update(value=None)
title = """
Intern·Vchitect (Text-to-Video)
Apply Intern·Vchitect to generate a video
"""
# print(1)
with gr.Blocks(css='style.css') as demo:
gr.Markdown("LaVie: Text-to-Video generation")
with gr.Column():
with gr.Row(elem_id="col-container"):
# inputs = [prompt, seed_inp, ddim_steps]
# outputs = [video_out]
with gr.Column():
prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
cfg = gr.Number(label="guidance_scale",value=7.5)
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=400, elem_id="seed-in")
# with gr.Row():
# # control_task = gr.Dropdown(label="Task", choices=["Text-2-video", "Image-2-video"], value="Text-2-video", multiselect=False, elem_id="controltask-in")
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=123456, elem_id="seed-in")
# ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=250, step=1)
# ex = gr.Examples(
# examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
# ['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
# ['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
# ['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
# ['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
# ['a teddy bear walking on the street, 2k, high quality',100,50,7],
# ['a panda taking a selfie, 2k, high quality',400,50,7],
# ['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
# ['jungle river at sunset, ultra quality',400,50,7],
# ['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
# ['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
# ['a confused grizzly bear in calculus class',1000,50,7]],
# fn = infer,
# inputs=[prompt, seed_inp, ddim_steps,cfg],
# # outputs=[video_out],
# cache_examples=False,
# examples_per_page = 6
# )
# ex.dataset.headers = [""]
with gr.Column():
submit_btn = gr.Button("Generate video")
clean_btn = gr.Button("Clean video")
# submit_btn = gr.Button("Generate video", size='sm')
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
video_out = gr.Video(label="Video result", elem_id="video-output")
# with gr.Row():
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
# submit_btn = gr.Button("Generate video", size='sm')
# video_out = gr.Video(label="Video result", elem_id="video-output", height=320, width=512)
inputs = [prompt, seed_inp, ddim_steps,cfg]
outputs = [video_out]
# gr.Examples(
# value = [['An astronaut riding a horse',123,50],
# ['a panda eating bamboo on a rock',123,50],
# ['Spiderman is surfing',123,50]],
# label = "example of sampling",
# show_label = True,
# headers = ['prompt','seed','steps'],
# datatype = ['str','number','number'],
# row_count=4,
# col_count=(3,"fixed")
# )
ex = gr.Examples(
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7],
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7],
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7],
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7],
['a teddy bear walking in the park, oil painting style, high quality',400,50,7],
['a teddy bear walking on the street, 2k, high quality',100,50,7],
['a panda taking a selfie, 2k, high quality',400,50,7],
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7],
['jungle river at sunset, ultra quality',400,50,7],
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7],
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7],
['a confused grizzly bear in calculus class',1000,50,7]],
fn = infer,
inputs=[prompt, seed_inp, ddim_steps,cfg],
outputs=[video_out],
cache_examples=False,
)
ex.dataset.headers = [""]
# control_task.change(change_task_options, inputs=[control_task], outputs=[canny_opt, hough_opt, normal_opt], queue=False)
# submit_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False)
submit_btn.click(infer, inputs, outputs)
# share_button.click(None, [], [], _js=share_js)
print(2)
demo.queue(max_size=12).launch()