vsrinivas chenwuml commited on
Commit
f1ea7c1
0 Parent(s):

Duplicate from amazon/FalconLite2

Browse files

Co-authored-by: Chen Wu <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ inference: false
4
+ ---
5
+
6
+ # FalconLite2 Model
7
+
8
+ FalconLit2 is a fine-tuned and quantized [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b) language model, capable of processing long (up to 24K tokens) input sequences. By utilizing 4-bit [GPTQ quantization](https://github.com/PanQiWei/AutoGPTQ) and adapted RotaryEmbedding, FalconLite2 is able to process 10x longer contexts while consuming 4x less GPU memory than the original model. FalconLite2 is useful for applications such as topic retrieval, summarization, and question-answering. FalconLite2 can be deployed on a single AWS `g5.12x` instance with [TGI 1.0.3](https://github.com/huggingface/text-generation-inference/tree/v1.0.3), making it suitable for applications that require high performance in resource-constrained environments. You can also deploy FalconLite2 directly on SageMaker endpoints.
9
+
10
+ FalconLite2 evolves from [FalconLite](https://huggingface.co/amazon/FalconLite), and their similarities and differences are summarized below:
11
+ |Model|Fine-tuned on long contexts| Quantization | Max context length| RotaryEmbedding adaptation| Inference framework|
12
+ |----------|-------------:|-------------:|------------:|-----------:|-----------:|
13
+ | FalconLite | No | 4-bit GPTQ |12K | [dNTK](https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/) | TGI 0.9.2 |
14
+ | FalconLite2 | Yes | 4-bit GPTQ |24K | rope_theta = 1000000 | TGI 1.0.3 |
15
+
16
+ ## Model Details
17
+
18
+ - **Developed by:** [AWS Contributors](https://github.com/orgs/aws-samples/teams/aws-prototype-ml-apac)
19
+ - **Model type:** [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
20
+ - **Language:** English
21
+ - **Finetuned from weights:** [Falcon 40B SFT OASST-TOP1 model](https://huggingface.co/OpenAssistant/falcon-40b-sft-top1-560)
22
+ - **Finetuned on data:** [SLidingEncoder and Decoder (SLED)](https://huggingface.co/datasets/tau/sled) and [(Long) Natural Questions (NQ)](https://huggingface.co/datasets/togethercomputer/Long-Data-Collections#multi-passage-qa-from-natural-questions)
23
+ - **Served using framework:** [Text-Generation-Inference 1.0.3](https://github.com/huggingface/text-generation-inference/tree/v1.0.3)
24
+ - **Model License:** Apache 2.0
25
+ - **Contact:** [GitHub issues](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/issues)
26
+
27
+ ## Deploy FalconLite2 on EC2 ##
28
+ SSH login to an AWS `g5.12x` instance with the [Deep Learning AMI](https://aws.amazon.com/releasenotes/aws-deep-learning-ami-gpu-pytorch-2-0-ubuntu-20-04/).
29
+
30
+ ### Start TGI server
31
+ ```bash
32
+ git clone https://github.com/awslabs/extending-the-context-length-of-open-source-llms.git falconlite-dev
33
+ cd falconlite-dev/falconlite2
34
+ # this may take a while to build updated vLLM CUDA kernels
35
+ ./docker_build.sh
36
+ ./start_falconlite.sh
37
+ ```
38
+ ### Perform inference
39
+ ```bash
40
+ # after FalconLite has been completely started
41
+ pip install -r ../script/requirements-client.txt
42
+
43
+ # test short context
44
+ python falconlite_client.py
45
+
46
+ # test long context of 13400 tokens,
47
+ # which are copied from [Amazon Aurora FAQs](https://aws.amazon.com/rds/aurora/faqs/)
48
+ python falconlite_client.py -l
49
+ ```
50
+ **Important** - Use the prompt template below for FalconLite2:
51
+ ```
52
+ <|prompter|>What are the main challenges to support a long context for LLM?<|endoftext|><|assistant|>
53
+ ```
54
+
55
+ **Important** - When using FalconLite2 for inference for the first time, it may require a brief 'warm-up' period that can take 10s of seconds. However, subsequent inferences should be faster and return results in a more timely manner. This warm-up period is normal and should not affect the overall performance of the system once the initialisation period has been completed.
56
+
57
+ ## Deploy FalconLite2 on Amazon SageMaker ##
58
+ To deploy FalconLite2 on a SageMaker endpoint, please follow [this notebook](https://github.com/awslabs/extending-the-context-length-of-open-source-llms/blob/main/falconlite2/sm_deploy.ipynb) running on a SageMaker Notebook instance (e.g. `g5.xlarge`).
59
+
60
+ ## Evalution Result ##
61
+ We evaluated FalconLite2 against benchmarks that are specifically designed to assess the capabilities of LLMs in handling longer contexts.
62
+
63
+ ### Accuracy ###
64
+ |Eval task|Input length| Input length | Input length| Input length| Input length|
65
+ |----------|-------------:|-------------:|------------:|-----------:|-----------:|
66
+ | | 2851| 5568 |8313 | 11044 | 13780
67
+ | [Topic Retrieval](https://lmsys.org/blog/2023-06-29-longchat/) | 100% | 100% | 100% | 100% | 90% |
68
+
69
+ |Eval task|Input length| Input length | Input length| Input length| Input length|Input length|
70
+ |----------|-------------:|-------------:|------------:|-----------:|-----------:|-----------:|
71
+ | | 3818| 5661 |7505 | 9354 | 11188 | 12657
72
+ | [Line Retrieval](https://lmsys.org/blog/2023-06-29-longchat/#longeval-results) | 84% | 82% | 66% | 56% | 62% | 34% |
73
+
74
+ |Eval task|Input length| Input length | Input length| Input length|
75
+ |----------|-------------:|-------------:|------------:|-----------:|
76
+ | | 3264| 5396 |8329 | 10197 |
77
+ | [Pass key Retrieval](https://github.com/epfml/landmark-attention/blob/main/llama/run_test.py#L101) | 100% | 100% | 100% | 100% |
78
+
79
+
80
+ |Eval task| Test set Accuracy | Hard subset Accuracy|
81
+ |----------|-------------:|-------------:|
82
+ | [Question Answering with Long Input Texts](https://nyu-mll.github.io/quality/) | 53.4% | 45.4% |
83
+
84
+ ## Limitations ##
85
+ Before using the FalconLite model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/scratch/output_models/test020-20k/checkpoint-2000",
3
+ "alibi": false,
4
+ "apply_residual_connection_post_layernorm": false,
5
+ "architectures": [
6
+ "RWForCausalLM"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_RW.RWConfig",
11
+ "AutoModel": "modelling_RW.RWModel",
12
+ "AutoModelForCausalLM": "modelling_RW.RWForCausalLM",
13
+ "AutoModelForQuestionAnswering": "modelling_RW.RWForQuestionAnswering",
14
+ "AutoModelForSequenceClassification": "modelling_RW.RWForSequenceClassification",
15
+ "AutoModelForTokenClassification": "modelling_RW.RWForTokenClassification"
16
+ },
17
+ "bias": false,
18
+ "bos_token_id": 11,
19
+ "eos_token_id": 11,
20
+ "hidden_dropout": 0.0,
21
+ "hidden_size": 8192,
22
+ "initializer_range": 0.02,
23
+ "layer_norm_epsilon": 1e-05,
24
+ "model_type": "RefinedWeb",
25
+ "n_head": 128,
26
+ "n_head_kv": 8,
27
+ "n_layer": 60,
28
+ "parallel_attn": true,
29
+ "torch_dtype": "float16",
30
+ "transformers_version": "4.31.0",
31
+ "use_cache": true,
32
+ "rope_theta": 1000000,
33
+ "vocab_size": 65040
34
+ }
configuration_RW.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Bloom configuration"""
16
+ from transformers.configuration_utils import PretrainedConfig
17
+ from transformers.utils import logging
18
+
19
+
20
+ logger = logging.get_logger(__name__)
21
+
22
+
23
+ class RWConfig(PretrainedConfig):
24
+ model_type = "RefinedWeb"
25
+ keys_to_ignore_at_inference = ["past_key_values"]
26
+ attribute_map = {
27
+ "num_hidden_layers": "n_layer",
28
+ "num_attention_heads": "n_head",
29
+ }
30
+
31
+ def __init__(
32
+ self,
33
+ vocab_size=250880,
34
+ hidden_size=64,
35
+ n_layer=2,
36
+ n_head=8,
37
+ layer_norm_epsilon=1e-5,
38
+ initializer_range=0.02,
39
+ use_cache=True,
40
+ bos_token_id=1,
41
+ eos_token_id=2,
42
+ apply_residual_connection_post_layernorm=False,
43
+ hidden_dropout=0.0,
44
+ attention_dropout=0.0,
45
+ n_head_kv=None,
46
+ alibi=False,
47
+ **kwargs,
48
+ ):
49
+ self.vocab_size = vocab_size
50
+ # Backward compatibility with n_embed kwarg
51
+ n_embed = kwargs.pop("n_embed", None)
52
+ self.hidden_size = hidden_size if n_embed is None else n_embed
53
+ self.n_layer = n_layer
54
+ self.n_head = n_head
55
+ self.layer_norm_epsilon = layer_norm_epsilon
56
+ self.initializer_range = initializer_range
57
+ self.use_cache = use_cache
58
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
59
+ self.hidden_dropout = hidden_dropout
60
+ self.attention_dropout = attention_dropout
61
+
62
+ self.bos_token_id = bos_token_id
63
+ self.eos_token_id = eos_token_id
64
+ self.n_head_kv = n_head if n_head_kv is None else n_head_kv
65
+ self.alibi = alibi
66
+
67
+ super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
68
+
69
+ @property
70
+ def head_dim(self):
71
+ return self.hidden_size // self.n_head
72
+
73
+ @property
74
+ def rotary(self):
75
+ return not self.alibi
gptq_model-4bit-128g.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:756d4526a7d5fb09faed2b676abe2634596b9a16c25114b4639fcb50044695c4
3
+ size 22271097816
modelling_RW.py ADDED
@@ -0,0 +1,1257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # port of models described in RW
2
+ # We use the bloom model as a starting point for these model.
3
+ # Please refer to the bloom models for usage instructions.
4
+
5
+ import math
6
+ import warnings
7
+ from typing import Optional, Tuple, Union
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
13
+ from torch.nn import functional as F
14
+
15
+ from transformers.modeling_outputs import (
16
+ BaseModelOutputWithPastAndCrossAttentions,
17
+ CausalLMOutputWithCrossAttentions,
18
+ QuestionAnsweringModelOutput,
19
+ SequenceClassifierOutputWithPast,
20
+ TokenClassifierOutput,
21
+ )
22
+ from transformers.modeling_utils import PreTrainedModel
23
+ from transformers.utils import logging
24
+ from .configuration_RW import RWConfig
25
+
26
+ logger = logging.get_logger(__name__)
27
+
28
+
29
+ # NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
30
+ # In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
31
+ class Linear(nn.Linear):
32
+ def forward(self, input: torch.Tensor) -> torch.Tensor:
33
+ ret = input @ self.weight.T
34
+ if self.bias is None:
35
+ return ret
36
+ else:
37
+ return ret + self.bias
38
+
39
+
40
+ from einops import rearrange
41
+
42
+
43
+ # rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
44
+ def rotate_half(x):
45
+ x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
46
+ return torch.cat(
47
+ (-x2, x1), dim=x1.ndim - 1
48
+ ) # dim=-1 triggers a bug in torch < 1.8.0
49
+
50
+
51
+ class RotaryEmbedding(torch.nn.Module):
52
+ """Implementation of RotaryEmbedding from GPT-NeoX.
53
+ This implementation is design to operate on queries and keys that are compatible with
54
+ [batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
55
+ """
56
+
57
+ def __init__(
58
+ self,
59
+ head_dim: int,
60
+ base=1000000,
61
+ ):
62
+ super().__init__()
63
+ inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
64
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
65
+ self.head_dim = head_dim
66
+ self.seq_len_cached = None
67
+ self.batch_size_cached = None
68
+ self.cos_cached: torch.Tensor | None = None
69
+ self.sin_cached: torch.Tensor | None = None
70
+ self.max_position_embeddings = 2048
71
+ self.base = base
72
+
73
+ def cos_sin(
74
+ self,
75
+ seq_len: int,
76
+ device="cuda",
77
+ dtype=torch.bfloat16,
78
+ ) -> torch.Tensor:
79
+ if seq_len != self.seq_len_cached:
80
+ self.seq_len_cached = seq_len
81
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
82
+
83
+ freqs = torch.outer(t, self.inv_freq.to(device=t.device))
84
+ #print(f"HAHA -- {t.dtype=} -- {freqs.dtype=}")
85
+ #raise Exception("dtype checking")
86
+ #freqs = torch.einsum("i,j->ij", t, self.inv_freq)
87
+ emb = torch.cat((freqs, freqs), dim=-1).to(device)
88
+
89
+ if dtype in [torch.float16, torch.bfloat16]:
90
+ emb = emb.float()
91
+
92
+ self.cos_cached = emb.cos()[None, :, :]
93
+ self.sin_cached = emb.sin()[None, :, :]
94
+
95
+ self.cos_cached = self.cos_cached.type(dtype)
96
+ self.sin_cached = self.sin_cached.type(dtype)
97
+
98
+ return self.cos_cached, self.sin_cached
99
+
100
+ def forward(self, q, k):
101
+ batch, seq_len, head_dim = q.shape
102
+ cos, sin = self.cos_sin(seq_len, q.device, q.dtype)
103
+ return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
104
+
105
+
106
+ def _make_causal_mask(
107
+ input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
108
+ ) -> torch.BoolTensor:
109
+ batch_size, target_length = input_ids_shape
110
+ mask = torch.empty(
111
+ (target_length, target_length + past_key_values_length),
112
+ dtype=torch.bool,
113
+ device=device,
114
+ )
115
+ # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
116
+ seq_ids = torch.arange(target_length, device=device)
117
+ mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
118
+
119
+ if past_key_values_length > 0:
120
+ mask[:, :past_key_values_length] = False
121
+
122
+ expanded_mask = mask[None, None, :, :].expand(
123
+ batch_size, 1, target_length, target_length + past_key_values_length
124
+ )
125
+ return expanded_mask
126
+
127
+
128
+ def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
129
+ batch_size, src_length = mask.shape
130
+ tgt_length = tgt_length if tgt_length is not None else src_length
131
+
132
+ expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
133
+ return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
134
+
135
+
136
+ def build_alibi_tensor(
137
+ attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype
138
+ ) -> torch.Tensor:
139
+ batch_size, seq_length = attention_mask.shape
140
+ closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
141
+ base = torch.tensor(
142
+ 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
143
+ device=attention_mask.device,
144
+ dtype=torch.float32,
145
+ )
146
+ powers = torch.arange(
147
+ 1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32
148
+ )
149
+ slopes = torch.pow(base, powers)
150
+
151
+ if closest_power_of_2 != num_heads:
152
+ extra_base = torch.tensor(
153
+ 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
154
+ device=attention_mask.device,
155
+ dtype=torch.float32,
156
+ )
157
+ num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
158
+ extra_powers = torch.arange(
159
+ 1,
160
+ 1 + 2 * num_remaining_heads,
161
+ 2,
162
+ device=attention_mask.device,
163
+ dtype=torch.int32,
164
+ )
165
+ slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
166
+
167
+ # Note: alibi will added to the attention bias that will be applied to the query, key product of attention
168
+ # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
169
+ # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
170
+ # => the query_length dimension will then be broadcasted correctly
171
+ # This is more or less identical to T5's relative position bias:
172
+ # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
173
+ arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
174
+ alibi = slopes[..., None].bfloat16() * arange_tensor
175
+ return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
176
+
177
+
178
+ def dropout_add(
179
+ x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool
180
+ ) -> torch.Tensor:
181
+ out = F.dropout(x, p=prob, training=training)
182
+ out = residual + out
183
+ return out
184
+
185
+
186
+ class Attention(nn.Module):
187
+ def __init__(self, config: RWConfig):
188
+ super().__init__()
189
+
190
+ self.hidden_size = config.hidden_size
191
+ self.num_heads = config.n_head
192
+ self.head_dim = self.hidden_size // self.num_heads
193
+ self.split_size = self.hidden_size
194
+ self.hidden_dropout = config.hidden_dropout
195
+
196
+ if self.head_dim * self.num_heads != self.hidden_size:
197
+ raise ValueError(
198
+ f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
199
+ f" {self.num_heads})."
200
+ )
201
+
202
+ self.maybe_rotary = (
203
+ RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k)
204
+ )
205
+
206
+ # Layer-wise attention scaling
207
+ self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
208
+ self.beta = self.inv_norm_factor
209
+
210
+ self.query_key_value = Linear(
211
+ self.hidden_size,
212
+ (config.n_head_kv * 2 + config.n_head) * self.head_dim,
213
+ bias=config.bias,
214
+ )
215
+ self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias)
216
+ self.attention_dropout = nn.Dropout(config.attention_dropout)
217
+ self.num_kv = config.n_head_kv
218
+
219
+ def _split_heads(
220
+ self, fused_qkv: torch.Tensor
221
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
222
+ """
223
+ Split the last dimension into (num_heads, head_dim), results share same memory
224
+ storage as `fused_qkv`
225
+
226
+ Args:
227
+ fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
228
+
229
+ Returns:
230
+ query: [batch_size, seq_length, num_heads, head_dim]
231
+ key: [batch_size, seq_length, num_heads, head_dim]
232
+ value: [batch_size, seq_length, num_heads, head_dim]
233
+ """
234
+ batch, seq_len, _ = fused_qkv.shape
235
+ qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv + 2, 64)
236
+ q = qkv[:, :, :, :-2]
237
+ k = qkv[:, :, :, [-2]]
238
+ v = qkv[:, :, :, [-1]]
239
+ k = torch.broadcast_to(k, q.shape)
240
+ v = torch.broadcast_to(v, q.shape)
241
+
242
+ q, k, v = [
243
+ rearrange(
244
+ x,
245
+ "batch seq_len group num_heads head_dim ->\
246
+ batch seq_len (group num_heads) head_dim",
247
+ head_dim=self.head_dim,
248
+ )
249
+ for x in [q, k, v]
250
+ ]
251
+ return q, k, v
252
+
253
+ def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
254
+ """
255
+ Merge heads together over the last dimenstion
256
+
257
+ Args:
258
+ x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
259
+
260
+ Returns:
261
+ torch.tensor: [batch_size, seq_length, num_heads * head_dim]
262
+ """
263
+ # What we want to achieve is:
264
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
265
+ batch_size_and_num_heads, seq_length, _ = x.shape
266
+ batch_size = batch_size_and_num_heads // self.num_heads
267
+
268
+ # First view to decompose the batch size
269
+ # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
270
+ x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
271
+
272
+ # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
273
+ x = x.permute(0, 2, 1, 3)
274
+
275
+ # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
276
+ return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
277
+
278
+ def forward(
279
+ self,
280
+ hidden_states: torch.Tensor,
281
+ alibi: torch.Tensor,
282
+ attention_mask: torch.Tensor,
283
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
284
+ head_mask: Optional[torch.Tensor] = None,
285
+ use_cache: bool = False,
286
+ output_attentions: bool = False,
287
+ ):
288
+ fused_qkv = self.query_key_value(
289
+ hidden_states
290
+ ) # [batch_size, seq_length, 3 x hidden_size]
291
+
292
+ # 3 x [batch_size, seq_length, num_heads, head_dim]
293
+ (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
294
+
295
+ batch_size, q_length, _, _ = query_layer.shape
296
+
297
+ query_layer = query_layer.transpose(1, 2).reshape(
298
+ batch_size * self.num_heads, q_length, self.head_dim
299
+ )
300
+ key_layer = key_layer.transpose(1, 2).reshape(
301
+ batch_size * self.num_heads,
302
+ q_length,
303
+ self.head_dim,
304
+ )
305
+ value_layer = value_layer.transpose(1, 2).reshape(
306
+ batch_size * self.num_heads, q_length, self.head_dim
307
+ )
308
+
309
+ query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
310
+
311
+ if layer_past is not None:
312
+ past_key, past_value = layer_past
313
+ # concatenate along seq_length dimension:
314
+ # - key: [batch_size * self.num_heads, head_dim, kv_length]
315
+ # - value: [batch_size * self.num_heads, kv_length, head_dim]
316
+ key_layer = torch.cat((past_key, key_layer), dim=1)
317
+ value_layer = torch.cat((past_value, value_layer), dim=1)
318
+
319
+ _, kv_length, _ = key_layer.shape
320
+
321
+ if use_cache is True:
322
+ present = (key_layer, value_layer)
323
+ else:
324
+ present = None
325
+
326
+ if alibi is None:
327
+ query_layer_ = query_layer.reshape(
328
+ batch_size, self.num_heads, -1, self.head_dim
329
+ )
330
+ key_layer_ = key_layer.reshape(
331
+ batch_size, self.num_heads, -1, self.head_dim
332
+ )
333
+ value_layer_ = value_layer.reshape(
334
+ batch_size, self.num_heads, -1, self.head_dim
335
+ )
336
+
337
+ attn_output = F.scaled_dot_product_attention(
338
+ query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
339
+ )
340
+
341
+ x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
342
+ x = x.permute(0, 2, 1, 3)
343
+ attn_output = x.reshape(
344
+ batch_size, q_length, self.num_heads * self.head_dim
345
+ )
346
+
347
+ output_tensor = self.dense(attn_output)
348
+
349
+ outputs = (output_tensor, present)
350
+ assert not output_attentions # not supported.
351
+ return outputs
352
+ else:
353
+ attention_mask_float = (
354
+ (attention_mask * 1.0)
355
+ .masked_fill(attention_mask, -1e9)
356
+ .to(torch.bfloat16)
357
+ )
358
+ matmul_result = query_layer @ key_layer.transpose(-1, -2)
359
+
360
+ # change view to [batch_size, num_heads, q_length, kv_length]
361
+ attention_scores = matmul_result.view(
362
+ batch_size, self.num_heads, q_length, kv_length
363
+ )
364
+
365
+ # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
366
+ input_dtype = attention_scores.dtype
367
+ # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
368
+ if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
369
+ attention_scores = attention_scores.to(torch.float32)
370
+ # attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
371
+ attention_probs = F.softmax(
372
+ (attention_scores + alibi.view(batch_size, self.num_heads, 1, -1))
373
+ * self.inv_norm_factor
374
+ + attention_mask_float,
375
+ dim=-1,
376
+ dtype=hidden_states.dtype,
377
+ )
378
+ # [batch_size, num_heads, q_length, kv_length]
379
+ attention_probs = self.attention_dropout(attention_probs)
380
+
381
+ if head_mask is not None:
382
+ attention_probs = attention_probs * head_mask
383
+
384
+ # change view [batch_size x num_heads, q_length, kv_length]
385
+ attention_probs_reshaped = attention_probs.view(
386
+ batch_size * self.num_heads, q_length, kv_length
387
+ )
388
+
389
+ # matmul: [batch_size * num_heads, q_length, head_dim]
390
+ context_layer = attention_probs_reshaped @ value_layer
391
+
392
+ # change view [batch_size, num_heads, q_length, head_dim]
393
+ context_layer = self._merge_heads(context_layer)
394
+
395
+ output_tensor = self.dense(context_layer)
396
+
397
+ outputs = (output_tensor, present)
398
+ if output_attentions:
399
+ outputs += (attention_probs,)
400
+
401
+ return outputs
402
+
403
+
404
+ class MLP(nn.Module):
405
+ def __init__(self, config: RWConfig):
406
+ super().__init__()
407
+ hidden_size = config.hidden_size
408
+
409
+ self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias)
410
+ self.act = nn.GELU()
411
+ self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias)
412
+ self.hidden_dropout = config.hidden_dropout
413
+
414
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
415
+ x = self.act(self.dense_h_to_4h(x))
416
+ x = self.dense_4h_to_h(x)
417
+ return x
418
+
419
+
420
+ class DecoderLayer(nn.Module):
421
+ def __init__(self, config: RWConfig):
422
+ super().__init__()
423
+ hidden_size = config.hidden_size
424
+
425
+ self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
426
+ self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
427
+
428
+ self.num_heads = config.n_head
429
+ self.self_attention = Attention(config)
430
+
431
+ self.mlp = MLP(config)
432
+
433
+ self.apply_residual_connection_post_layernorm = (
434
+ config.apply_residual_connection_post_layernorm
435
+ )
436
+ self.hidden_dropout = config.hidden_dropout
437
+
438
+ self.config = config
439
+
440
+ def forward(
441
+ self,
442
+ hidden_states: torch.Tensor,
443
+ alibi: torch.Tensor,
444
+ attention_mask: torch.Tensor,
445
+ layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
446
+ head_mask: Optional[torch.Tensor] = None,
447
+ use_cache: bool = False,
448
+ output_attentions: bool = False,
449
+ ):
450
+ ln_attn = self.ln_attn(hidden_states)
451
+ ln_mlp = self.ln_mlp(hidden_states)
452
+
453
+ residual = hidden_states
454
+
455
+ # Self attention.
456
+ attn_outputs = self.self_attention(
457
+ ln_attn,
458
+ layer_past=layer_past,
459
+ attention_mask=attention_mask,
460
+ alibi=alibi,
461
+ head_mask=head_mask,
462
+ use_cache=use_cache,
463
+ output_attentions=output_attentions,
464
+ )
465
+
466
+ attention_output = attn_outputs[0]
467
+
468
+ outputs = attn_outputs[1:]
469
+
470
+ # MLP.
471
+ mlp_output = self.mlp(ln_mlp)
472
+
473
+ output = dropout_add(
474
+ mlp_output + attention_output,
475
+ residual,
476
+ self.config.hidden_dropout,
477
+ training=self.training,
478
+ )
479
+
480
+ if use_cache:
481
+ outputs = (output,) + outputs
482
+ else:
483
+ outputs = (output,) + outputs[1:]
484
+
485
+ return outputs # hidden_states, present, attentions
486
+
487
+
488
+ class RWPreTrainedModel(PreTrainedModel):
489
+ _keys_to_ignore_on_load_missing = [
490
+ r"h.*.self_attention.scale_mask_softmax.causal_mask",
491
+ r"lm_head.weight",
492
+ ]
493
+ """
494
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
495
+ models.
496
+ """
497
+
498
+ config_class = RWConfig
499
+ base_model_prefix = "transformer"
500
+ supports_gradient_checkpointing = True
501
+ _no_split_modules = ["DecoderLayer"]
502
+
503
+ def __init__(self, *inputs, **kwargs):
504
+ super().__init__(*inputs, **kwargs)
505
+
506
+ def _init_weights(self, module: nn.Module):
507
+ """Initialize the weights."""
508
+ if isinstance(module, nn.Linear) or isinstance(module, Linear):
509
+ # Slightly different from the TF version which uses truncated_normal for initialization
510
+ # cf https://github.com/pytorch/pytorch/pull/5617
511
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
512
+ if module.bias is not None:
513
+ module.bias.data.zero_()
514
+ elif isinstance(module, nn.Embedding):
515
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
516
+ if module.padding_idx is not None:
517
+ module.weight.data[module.padding_idx].zero_()
518
+ elif isinstance(module, LayerNorm):
519
+ module.bias.data.zero_()
520
+ module.weight.data.fill_(1.0)
521
+
522
+ def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
523
+ if isinstance(module, RWModel):
524
+ module.gradient_checkpointing = value
525
+
526
+ @staticmethod
527
+ def _convert_to_standard_cache(
528
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
529
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
530
+ """
531
+ Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
532
+ num_heads, ...]))
533
+ """
534
+ batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
535
+ num_heads = batch_size_times_num_heads // batch_size
536
+ # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
537
+ # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
538
+ return tuple(
539
+ (
540
+ layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
541
+ layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
542
+ )
543
+ for layer_past in past_key_value
544
+ )
545
+
546
+ @staticmethod
547
+ def _convert_to_rw_cache(
548
+ past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
549
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
550
+ batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
551
+ batch_size_times_num_heads = batch_size * num_heads
552
+ # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
553
+ # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
554
+ return tuple(
555
+ (
556
+ layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
557
+ layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
558
+ )
559
+ for layer_past in past_key_value
560
+ )
561
+
562
+
563
+ class RWModel(RWPreTrainedModel):
564
+ def __init__(self, config: RWConfig):
565
+ super().__init__(config)
566
+
567
+ self.embed_dim = config.hidden_size
568
+ self.num_heads = config.n_head
569
+ self.alibi = config.alibi
570
+
571
+ # Embedding + LN Embedding
572
+ self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
573
+
574
+ # Transformer blocks
575
+ self.h = nn.ModuleList(
576
+ [DecoderLayer(config) for _ in range(config.num_hidden_layers)]
577
+ )
578
+
579
+ # Final Layer Norm
580
+ self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
581
+
582
+ self.gradient_checkpointing = False
583
+
584
+ # Initialize weights and apply final processing
585
+ self.post_init()
586
+
587
+ def get_input_embeddings(self):
588
+ return self.word_embeddings
589
+
590
+ def _prepare_attn_mask(
591
+ self,
592
+ attention_mask: torch.Tensor,
593
+ input_shape: Tuple[int, int],
594
+ past_key_values_length: int,
595
+ ) -> torch.BoolTensor:
596
+ # create causal mask
597
+ # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
598
+ combined_attention_mask = None
599
+ device = attention_mask.device
600
+ _, src_length = input_shape
601
+
602
+ if src_length > 1:
603
+ combined_attention_mask = _make_causal_mask(
604
+ input_shape,
605
+ device=device,
606
+ past_key_values_length=past_key_values_length,
607
+ )
608
+
609
+ # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
610
+ expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
611
+ combined_attention_mask = (
612
+ expanded_attn_mask
613
+ if combined_attention_mask is None
614
+ else expanded_attn_mask | combined_attention_mask
615
+ )
616
+
617
+ return combined_attention_mask
618
+
619
+ def set_input_embeddings(self, new_embeddings: torch.Tensor):
620
+ self.word_embeddings = new_embeddings
621
+
622
+ def forward(
623
+ self,
624
+ input_ids: Optional[torch.LongTensor] = None,
625
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
626
+ attention_mask: Optional[torch.Tensor] = None,
627
+ head_mask: Optional[torch.LongTensor] = None,
628
+ inputs_embeds: Optional[torch.LongTensor] = None,
629
+ use_cache: Optional[bool] = None,
630
+ output_attentions: Optional[bool] = None,
631
+ output_hidden_states: Optional[bool] = None,
632
+ return_dict: Optional[bool] = None,
633
+ **deprecated_arguments,
634
+ ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
635
+ if deprecated_arguments.pop("position_ids", False) is not False:
636
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
637
+ warnings.warn(
638
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
639
+ " passing `position_ids`.",
640
+ FutureWarning,
641
+ )
642
+ if len(deprecated_arguments) > 0:
643
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
644
+
645
+ output_attentions = (
646
+ output_attentions
647
+ if output_attentions is not None
648
+ else self.config.output_attentions
649
+ )
650
+ output_hidden_states = (
651
+ output_hidden_states
652
+ if output_hidden_states is not None
653
+ else self.config.output_hidden_states
654
+ )
655
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
656
+ return_dict = (
657
+ return_dict if return_dict is not None else self.config.use_return_dict
658
+ )
659
+
660
+ if input_ids is not None and inputs_embeds is not None:
661
+ raise ValueError(
662
+ "You cannot specify both input_ids and inputs_embeds at the same time"
663
+ )
664
+ elif input_ids is not None:
665
+ batch_size, seq_length = input_ids.shape
666
+ elif inputs_embeds is not None:
667
+ batch_size, seq_length, _ = inputs_embeds.shape
668
+ else:
669
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
670
+
671
+ if past_key_values is None:
672
+ past_key_values = tuple([None] * len(self.h))
673
+
674
+ # Prepare head mask if needed
675
+ # 1.0 in head_mask indicate we keep the head
676
+ # attention_probs has shape batch_size x num_heads x N x N
677
+ # head_mask has shape n_layer x batch x num_heads x N x N
678
+ head_mask = self.get_head_mask(head_mask, self.config.n_layer)
679
+
680
+ if inputs_embeds is None:
681
+ inputs_embeds = self.word_embeddings(input_ids)
682
+
683
+ hidden_states = inputs_embeds
684
+
685
+ presents = () if use_cache else None
686
+ all_self_attentions = () if output_attentions else None
687
+ all_hidden_states = () if output_hidden_states else None
688
+
689
+ # Compute alibi tensor: check build_alibi_tensor documentation
690
+ seq_length_with_past = seq_length
691
+ past_key_values_length = 0
692
+ if past_key_values[0] is not None:
693
+ past_key_values_length = past_key_values[0][0].shape[2]
694
+ seq_length_with_past = seq_length_with_past + past_key_values_length
695
+ if attention_mask is None:
696
+ attention_mask = torch.ones(
697
+ (batch_size, seq_length_with_past), device=hidden_states.device
698
+ )
699
+ else:
700
+ attention_mask = attention_mask.to(hidden_states.device)
701
+
702
+ if self.alibi:
703
+ alibi = build_alibi_tensor(
704
+ attention_mask, self.num_heads, dtype=hidden_states.dtype
705
+ )
706
+ else:
707
+ alibi = None
708
+
709
+ causal_mask = self._prepare_attn_mask(
710
+ attention_mask,
711
+ input_shape=(batch_size, seq_length),
712
+ past_key_values_length=past_key_values_length,
713
+ )
714
+
715
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
716
+ if output_hidden_states:
717
+ all_hidden_states = all_hidden_states + (hidden_states,)
718
+
719
+ if self.gradient_checkpointing and self.training:
720
+ if use_cache:
721
+ logger.warning(
722
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
723
+ )
724
+ use_cache = False
725
+
726
+ def create_custom_forward(module):
727
+ def custom_forward(*inputs):
728
+ # None for past_key_value
729
+ return module(
730
+ *inputs,
731
+ use_cache=use_cache,
732
+ output_attentions=output_attentions,
733
+ )
734
+
735
+ return custom_forward
736
+
737
+ outputs = torch.utils.checkpoint.checkpoint(
738
+ create_custom_forward(block),
739
+ hidden_states,
740
+ alibi,
741
+ causal_mask,
742
+ head_mask[i],
743
+ )
744
+ else:
745
+ outputs = block(
746
+ hidden_states,
747
+ layer_past=layer_past,
748
+ attention_mask=causal_mask,
749
+ head_mask=head_mask[i],
750
+ use_cache=use_cache,
751
+ output_attentions=output_attentions,
752
+ alibi=alibi,
753
+ )
754
+
755
+ hidden_states = outputs[0]
756
+ if use_cache is True:
757
+ presents = presents + (outputs[1],)
758
+
759
+ if output_attentions:
760
+ all_self_attentions = all_self_attentions + (
761
+ outputs[2 if use_cache else 1],
762
+ )
763
+
764
+ # Add last hidden state
765
+ hidden_states = self.ln_f(hidden_states)
766
+
767
+ if output_hidden_states:
768
+ all_hidden_states = all_hidden_states + (hidden_states,)
769
+
770
+ if not return_dict:
771
+ return tuple(
772
+ v
773
+ for v in [
774
+ hidden_states,
775
+ presents,
776
+ all_hidden_states,
777
+ all_self_attentions,
778
+ ]
779
+ if v is not None
780
+ )
781
+
782
+ return BaseModelOutputWithPastAndCrossAttentions(
783
+ last_hidden_state=hidden_states,
784
+ past_key_values=presents,
785
+ hidden_states=all_hidden_states,
786
+ attentions=all_self_attentions,
787
+ )
788
+
789
+
790
+ class RWForCausalLM(RWPreTrainedModel):
791
+ _keys_to_ignore_on_load_missing = [
792
+ r"h.*.self_attention.scale_mask_softmax.causal_mask",
793
+ r"lm_head.weight",
794
+ ]
795
+
796
+ def __init__(self, config: RWConfig):
797
+ super().__init__(config)
798
+ self.transformer = RWModel(config)
799
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
800
+
801
+ # Initialize weights and apply final processing
802
+ self.post_init()
803
+
804
+ def get_output_embeddings(self):
805
+ return self.lm_head
806
+
807
+ def set_output_embeddings(self, new_embeddings: torch.Tensor):
808
+ self.lm_head = new_embeddings
809
+
810
+ def prepare_inputs_for_generation(
811
+ self,
812
+ input_ids: torch.LongTensor,
813
+ past: Optional[torch.Tensor] = None,
814
+ attention_mask: Optional[torch.Tensor] = None,
815
+ **kwargs,
816
+ ) -> dict:
817
+ # only last token for input_ids if past is not None
818
+ if past:
819
+ input_ids = input_ids[:, -1].unsqueeze(-1)
820
+
821
+ # the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed
822
+ if past[0][0].shape[0] == input_ids.shape[0]:
823
+ past = self._convert_to_rw_cache(past)
824
+
825
+ return {
826
+ "input_ids": input_ids,
827
+ "past_key_values": past,
828
+ "use_cache": kwargs.get("use_cache"),
829
+ "attention_mask": attention_mask,
830
+ }
831
+
832
+ def forward(
833
+ self,
834
+ input_ids: Optional[torch.LongTensor] = None,
835
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
836
+ attention_mask: Optional[torch.Tensor] = None,
837
+ head_mask: Optional[torch.Tensor] = None,
838
+ inputs_embeds: Optional[torch.Tensor] = None,
839
+ labels: Optional[torch.Tensor] = None,
840
+ use_cache: Optional[bool] = None,
841
+ output_attentions: Optional[bool] = None,
842
+ output_hidden_states: Optional[bool] = None,
843
+ return_dict: Optional[bool] = None,
844
+ input_tokens: Optional[torch.LongTensor] = None,
845
+ **deprecated_arguments,
846
+ ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
847
+ r"""
848
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
849
+ Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
850
+ `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
851
+ are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
852
+ """
853
+ if deprecated_arguments.pop("position_ids", False) is not False:
854
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
855
+ warnings.warn(
856
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
857
+ " passing `position_ids`.",
858
+ FutureWarning,
859
+ )
860
+ if len(deprecated_arguments) > 0:
861
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
862
+
863
+ return_dict = (
864
+ return_dict if return_dict is not None else self.config.use_return_dict
865
+ )
866
+
867
+ transformer_outputs = self.transformer(
868
+ input_ids,
869
+ past_key_values=past_key_values,
870
+ attention_mask=attention_mask,
871
+ head_mask=head_mask,
872
+ inputs_embeds=inputs_embeds,
873
+ use_cache=use_cache,
874
+ output_attentions=output_attentions,
875
+ output_hidden_states=output_hidden_states,
876
+ return_dict=return_dict,
877
+ )
878
+ hidden_states = transformer_outputs[0]
879
+
880
+ lm_logits = self.lm_head(hidden_states)
881
+
882
+ loss = None
883
+ if labels is not None:
884
+ if (input_tokens is not None):
885
+ stt = input_tokens
886
+ # Shift so that tokens < n predict n and also only calculate output loss
887
+ shift_logits = lm_logits[..., stt :-1, :].contiguous()
888
+ shift_labels = labels[..., stt + 1 :].contiguous()
889
+ else:
890
+ # Shift so that tokens < n predict n
891
+ shift_logits = lm_logits[..., :-1, :].contiguous()
892
+ shift_labels = labels[..., 1:].contiguous()
893
+ batch_size, seq_length, vocab_size = shift_logits.shape
894
+
895
+ # Flatten the tokens
896
+ loss_fct = CrossEntropyLoss()
897
+ loss = loss_fct(
898
+ shift_logits.view(batch_size * seq_length, vocab_size),
899
+ shift_labels.view(batch_size * seq_length),
900
+ )
901
+
902
+ if not return_dict:
903
+ output = (lm_logits,) + transformer_outputs[1:]
904
+ return ((loss,) + output) if loss is not None else output
905
+
906
+ return CausalLMOutputWithCrossAttentions(
907
+ loss=loss,
908
+ logits=lm_logits,
909
+ past_key_values=transformer_outputs.past_key_values,
910
+ hidden_states=transformer_outputs.hidden_states,
911
+ attentions=transformer_outputs.attentions,
912
+ )
913
+
914
+ def _reorder_cache(
915
+ self,
916
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...],
917
+ beam_idx: torch.LongTensor,
918
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
919
+ """
920
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
921
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
922
+ beam_idx at every generation step.
923
+
924
+ Output shares the same memory storage as `past`.
925
+ """
926
+ standardized_past = self._convert_to_standard_cache(
927
+ past, batch_size=len(beam_idx)
928
+ )
929
+
930
+ # Get a copy of `beam_idx` on all the devices where we need those indices.
931
+ device_to_beam_idx = {
932
+ past_state.device: beam_idx.to(past_state.device)
933
+ for layer_past in past
934
+ for past_state in layer_past
935
+ }
936
+ reordered_past = tuple(
937
+ (
938
+ layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
939
+ layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
940
+ )
941
+ for layer_past in standardized_past
942
+ )
943
+ return self._convert_to_rw_cache(reordered_past)
944
+
945
+
946
+ class RWForSequenceClassification(RWPreTrainedModel):
947
+ _keys_to_ignore_on_load_missing = [
948
+ r"h.*.self_attention.scale_mask_softmax.causal_mask",
949
+ r"lm_head.weight",
950
+ ]
951
+
952
+ def __init__(self, config: RWConfig):
953
+ super().__init__(config)
954
+ self.num_labels = config.num_labels
955
+ self.transformer = RWModel(config)
956
+ self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
957
+
958
+ # Initialize weights and apply final processing
959
+ self.post_init()
960
+
961
+ def forward(
962
+ self,
963
+ input_ids: Optional[torch.LongTensor] = None,
964
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
965
+ attention_mask: Optional[torch.Tensor] = None,
966
+ head_mask: Optional[torch.Tensor] = None,
967
+ inputs_embeds: Optional[torch.Tensor] = None,
968
+ labels: Optional[torch.Tensor] = None,
969
+ use_cache: Optional[bool] = None,
970
+ output_attentions: Optional[bool] = None,
971
+ output_hidden_states: Optional[bool] = None,
972
+ return_dict: Optional[bool] = None,
973
+ **deprecated_arguments,
974
+ ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
975
+ r"""
976
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
977
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
978
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
979
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
980
+ """
981
+ if deprecated_arguments.pop("position_ids", False) is not False:
982
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
983
+ warnings.warn(
984
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
985
+ " passing `position_ids`.",
986
+ FutureWarning,
987
+ )
988
+ if len(deprecated_arguments) > 0:
989
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
990
+
991
+ return_dict = (
992
+ return_dict if return_dict is not None else self.config.use_return_dict
993
+ )
994
+
995
+ transformer_outputs = self.transformer(
996
+ input_ids,
997
+ past_key_values=past_key_values,
998
+ attention_mask=attention_mask,
999
+ head_mask=head_mask,
1000
+ inputs_embeds=inputs_embeds,
1001
+ use_cache=use_cache,
1002
+ output_attentions=output_attentions,
1003
+ output_hidden_states=output_hidden_states,
1004
+ return_dict=return_dict,
1005
+ )
1006
+
1007
+ hidden_states = transformer_outputs[0]
1008
+ logits = self.score(hidden_states)
1009
+
1010
+ if input_ids is not None:
1011
+ batch_size = input_ids.shape[0]
1012
+ else:
1013
+ batch_size = inputs_embeds.shape[0]
1014
+
1015
+ if self.config.pad_token_id is None and batch_size != 1:
1016
+ raise ValueError(
1017
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1018
+ )
1019
+ if self.config.pad_token_id is None:
1020
+ sequence_lengths = -1
1021
+ else:
1022
+ if input_ids is not None:
1023
+ sequence_lengths = (
1024
+ torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1
1025
+ )
1026
+ else:
1027
+ sequence_lengths = -1
1028
+ logger.warning(
1029
+ f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
1030
+ "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
1031
+ )
1032
+
1033
+ pooled_logits = logits[
1034
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1035
+ ]
1036
+
1037
+ loss = None
1038
+ if labels is not None:
1039
+ if self.config.problem_type is None:
1040
+ if self.num_labels == 1:
1041
+ self.config.problem_type = "regression"
1042
+ elif self.num_labels > 1 and (
1043
+ labels.dtype == torch.long or labels.dtype == torch.int
1044
+ ):
1045
+ self.config.problem_type = "single_label_classification"
1046
+ else:
1047
+ self.config.problem_type = "multi_label_classification"
1048
+
1049
+ if self.config.problem_type == "regression":
1050
+ loss_fct = MSELoss()
1051
+ if self.num_labels == 1:
1052
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1053
+ else:
1054
+ loss = loss_fct(pooled_logits, labels)
1055
+ elif self.config.problem_type == "single_label_classification":
1056
+ loss_fct = CrossEntropyLoss()
1057
+ loss = loss_fct(pooled_logits, labels)
1058
+ elif self.config.problem_type == "multi_label_classification":
1059
+ loss_fct = BCEWithLogitsLoss()
1060
+ loss = loss_fct(pooled_logits, labels)
1061
+ if not return_dict:
1062
+ output = (pooled_logits,) + transformer_outputs[1:]
1063
+ return ((loss,) + output) if loss is not None else output
1064
+
1065
+ return SequenceClassifierOutputWithPast(
1066
+ loss=loss,
1067
+ logits=pooled_logits,
1068
+ past_key_values=transformer_outputs.past_key_values,
1069
+ hidden_states=transformer_outputs.hidden_states,
1070
+ attentions=transformer_outputs.attentions,
1071
+ )
1072
+
1073
+
1074
+ class RWForTokenClassification(RWPreTrainedModel):
1075
+ _keys_to_ignore_on_load_missing = [
1076
+ r"h.*.self_attention.scale_mask_softmax.causal_mask",
1077
+ r"lm_head.weight",
1078
+ ]
1079
+
1080
+ def __init__(self, config: RWConfig):
1081
+ super().__init__(config)
1082
+ self.num_labels = config.num_labels
1083
+
1084
+ self.transformer = RWModel(config)
1085
+ if (
1086
+ hasattr(config, "classifier_dropout")
1087
+ and config.classifier_dropout is not None
1088
+ ):
1089
+ classifier_dropout = config.classifier_dropout
1090
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
1091
+ classifier_dropout = config.hidden_dropout
1092
+ else:
1093
+ classifier_dropout = 0.1
1094
+ self.dropout = nn.Dropout(classifier_dropout)
1095
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
1096
+
1097
+ # Initialize weights and apply final processing
1098
+ self.post_init()
1099
+
1100
+ def forward(
1101
+ self,
1102
+ input_ids: Optional[torch.LongTensor] = None,
1103
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1104
+ attention_mask: Optional[torch.Tensor] = None,
1105
+ head_mask: Optional[torch.Tensor] = None,
1106
+ inputs_embeds: Optional[torch.Tensor] = None,
1107
+ labels: Optional[torch.Tensor] = None,
1108
+ use_cache: Optional[bool] = None,
1109
+ output_attentions: Optional[bool] = None,
1110
+ output_hidden_states: Optional[bool] = None,
1111
+ return_dict: Optional[bool] = None,
1112
+ **deprecated_arguments,
1113
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
1114
+ r"""
1115
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1116
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1117
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1118
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1119
+ """
1120
+ if deprecated_arguments.pop("position_ids", False) is not False:
1121
+ # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
1122
+ warnings.warn(
1123
+ "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
1124
+ " passing `position_ids`.",
1125
+ FutureWarning,
1126
+ )
1127
+ if len(deprecated_arguments) > 0:
1128
+ raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
1129
+
1130
+ return_dict = (
1131
+ return_dict if return_dict is not None else self.config.use_return_dict
1132
+ )
1133
+
1134
+ transformer_outputs = self.transformer(
1135
+ input_ids,
1136
+ past_key_values=past_key_values,
1137
+ attention_mask=attention_mask,
1138
+ head_mask=head_mask,
1139
+ inputs_embeds=inputs_embeds,
1140
+ use_cache=use_cache,
1141
+ output_attentions=output_attentions,
1142
+ output_hidden_states=output_hidden_states,
1143
+ return_dict=return_dict,
1144
+ )
1145
+
1146
+ hidden_states = transformer_outputs[0]
1147
+ hidden_states = self.dropout(hidden_states)
1148
+ logits = self.classifier(hidden_states)
1149
+
1150
+ loss = None
1151
+ if labels is not None:
1152
+ batch_size, seq_length = labels.shape
1153
+ loss_fct = CrossEntropyLoss()
1154
+ loss = loss_fct(
1155
+ logits.view(batch_size * seq_length, self.num_labels),
1156
+ labels.view(batch_size * seq_length),
1157
+ )
1158
+
1159
+ if not return_dict:
1160
+ output = (logits,) + transformer_outputs[2:]
1161
+ return ((loss,) + output) if loss is not None else output
1162
+
1163
+ return TokenClassifierOutput(
1164
+ loss=loss,
1165
+ logits=logits,
1166
+ hidden_states=transformer_outputs.hidden_states,
1167
+ attentions=transformer_outputs.attentions,
1168
+ )
1169
+
1170
+
1171
+ class RWForQuestionAnswering(RWPreTrainedModel):
1172
+ _keys_to_ignore_on_load_missing = [
1173
+ r"h.*.self_attention.scale_mask_softmax.causal_mask",
1174
+ r"lm_head.weight",
1175
+ ]
1176
+
1177
+ def __init__(self, config):
1178
+ super().__init__(config)
1179
+ self.transformer = RWModel(config)
1180
+ self.qa_outputs = nn.Linear(config.hidden_size, 2)
1181
+
1182
+ # Initialize weights and apply final processing
1183
+ self.post_init()
1184
+
1185
+ def forward(
1186
+ self,
1187
+ input_ids: Optional[torch.LongTensor] = None,
1188
+ attention_mask: Optional[torch.FloatTensor] = None,
1189
+ position_ids: Optional[torch.LongTensor] = None,
1190
+ head_mask: Optional[torch.FloatTensor] = None,
1191
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1192
+ start_positions: Optional[torch.LongTensor] = None,
1193
+ end_positions: Optional[torch.LongTensor] = None,
1194
+ output_attentions: Optional[bool] = None,
1195
+ output_hidden_states: Optional[bool] = None,
1196
+ return_dict: Optional[bool] = None,
1197
+ ) -> Union[Tuple, QuestionAnsweringModelOutput]:
1198
+ r"""
1199
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1200
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1201
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1202
+ are not taken into account for computing the loss.
1203
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1204
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1205
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1206
+ are not taken into account for computing the loss.
1207
+ """
1208
+ return_dict = (
1209
+ return_dict if return_dict is not None else self.config.use_return_dict
1210
+ )
1211
+
1212
+ outputs = self.transformer(
1213
+ input_ids,
1214
+ attention_mask=attention_mask,
1215
+ position_ids=position_ids,
1216
+ head_mask=head_mask,
1217
+ inputs_embeds=inputs_embeds,
1218
+ output_attentions=output_attentions,
1219
+ output_hidden_states=output_hidden_states,
1220
+ return_dict=return_dict,
1221
+ )
1222
+
1223
+ sequence_output = outputs[0]
1224
+
1225
+ logits = self.qa_outputs(sequence_output)
1226
+ start_logits, end_logits = logits.split(1, dim=-1)
1227
+ start_logits = start_logits.squeeze(-1).contiguous()
1228
+ end_logits = end_logits.squeeze(-1).contiguous()
1229
+
1230
+ total_loss = None
1231
+ if start_positions is not None and end_positions is not None:
1232
+ # If we are on multi-GPU, split add a dimension
1233
+ if len(start_positions.size()) > 1:
1234
+ start_positions = start_positions.squeeze(-1)
1235
+ if len(end_positions.size()) > 1:
1236
+ end_positions = end_positions.squeeze(-1)
1237
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1238
+ ignored_index = start_logits.size(1)
1239
+ start_positions = start_positions.clamp(0, ignored_index)
1240
+ end_positions = end_positions.clamp(0, ignored_index)
1241
+
1242
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1243
+ start_loss = loss_fct(start_logits, start_positions)
1244
+ end_loss = loss_fct(end_logits, end_positions)
1245
+ total_loss = (start_loss + end_loss) / 2
1246
+
1247
+ if not return_dict:
1248
+ output = (start_logits, end_logits) + outputs[2:]
1249
+ return ((total_loss,) + output) if total_loss is not None else output
1250
+
1251
+ return QuestionAnsweringModelOutput(
1252
+ loss=total_loss,
1253
+ start_logits=start_logits,
1254
+ end_logits=end_logits,
1255
+ hidden_states=outputs.hidden_states,
1256
+ attentions=outputs.attentions,
1257
+ )
quantize_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bits": 4,
3
+ "group_size": 128,
4
+ "damp_percent": 0.01,
5
+ "desc_act": true,
6
+ "sym": true,
7
+ "true_sequential": true,
8
+ "model_name_or_path": null,
9
+ "model_file_base_name": null
10
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ ">>COMMENT<<",
4
+ "<|system|>",
5
+ "<|prefix_end|>",
6
+ "<|prefix_begin|>",
7
+ "<|assistant|>",
8
+ ">>MIDDLE<<",
9
+ "<|prompter|>",
10
+ ">>ANSWER<<",
11
+ ">>ABSTRACT<<",
12
+ ">>DOMAIN<<",
13
+ ">>TITLE<<",
14
+ ">>SUMMARY<<",
15
+ ">>QUESTION<<",
16
+ ">>INTRODUCTION<<",
17
+ ">>PREFIX<<",
18
+ ">>SUFFIX<<"
19
+ ],
20
+ "eos_token": "<|endoftext|>",
21
+ "pad_token": "<|endoftext|>",
22
+ "sep_token": "<|endoftext|>"
23
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "clean_up_tokenization_spaces": true,
4
+ "eos_token": "<|endoftext|>",
5
+ "model_max_length": 2048,
6
+ "tokenizer_class": "PreTrainedTokenizerFast"
7
+ }
version.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ 1