walsons commited on
Commit
ace4e04
1 Parent(s): 2b26e6f

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2546 -0
README.md ADDED
@@ -0,0 +1,2546 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jinaai/jina-embeddings-v2-base-en
3
+ datasets:
4
+ - allenai/c4
5
+ language: en
6
+ license: apache-2.0
7
+ tags:
8
+ - sentence-transformers
9
+ - feature-extraction
10
+ - sentence-similarity
11
+ - mteb
12
+ - llama-cpp
13
+ - gguf-my-repo
14
+ inference: false
15
+ model-index:
16
+ - name: jina-embedding-b-en-v2
17
+ results:
18
+ - task:
19
+ type: Classification
20
+ dataset:
21
+ name: MTEB AmazonCounterfactualClassification (en)
22
+ type: mteb/amazon_counterfactual
23
+ config: en
24
+ split: test
25
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
26
+ metrics:
27
+ - type: accuracy
28
+ value: 74.73134328358209
29
+ - type: ap
30
+ value: 37.765427081831035
31
+ - type: f1
32
+ value: 68.79367444339518
33
+ - task:
34
+ type: Classification
35
+ dataset:
36
+ name: MTEB AmazonPolarityClassification
37
+ type: mteb/amazon_polarity
38
+ config: default
39
+ split: test
40
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
41
+ metrics:
42
+ - type: accuracy
43
+ value: 88.544275
44
+ - type: ap
45
+ value: 84.61328675662887
46
+ - type: f1
47
+ value: 88.51879035862375
48
+ - task:
49
+ type: Classification
50
+ dataset:
51
+ name: MTEB AmazonReviewsClassification (en)
52
+ type: mteb/amazon_reviews_multi
53
+ config: en
54
+ split: test
55
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
56
+ metrics:
57
+ - type: accuracy
58
+ value: 45.263999999999996
59
+ - type: f1
60
+ value: 43.778759656699435
61
+ - task:
62
+ type: Retrieval
63
+ dataset:
64
+ name: MTEB ArguAna
65
+ type: arguana
66
+ config: default
67
+ split: test
68
+ revision: None
69
+ metrics:
70
+ - type: map_at_1
71
+ value: 21.693
72
+ - type: map_at_10
73
+ value: 35.487
74
+ - type: map_at_100
75
+ value: 36.862
76
+ - type: map_at_1000
77
+ value: 36.872
78
+ - type: map_at_3
79
+ value: 30.049999999999997
80
+ - type: map_at_5
81
+ value: 32.966
82
+ - type: mrr_at_1
83
+ value: 21.977
84
+ - type: mrr_at_10
85
+ value: 35.565999999999995
86
+ - type: mrr_at_100
87
+ value: 36.948
88
+ - type: mrr_at_1000
89
+ value: 36.958
90
+ - type: mrr_at_3
91
+ value: 30.121
92
+ - type: mrr_at_5
93
+ value: 33.051
94
+ - type: ndcg_at_1
95
+ value: 21.693
96
+ - type: ndcg_at_10
97
+ value: 44.181
98
+ - type: ndcg_at_100
99
+ value: 49.982
100
+ - type: ndcg_at_1000
101
+ value: 50.233000000000004
102
+ - type: ndcg_at_3
103
+ value: 32.830999999999996
104
+ - type: ndcg_at_5
105
+ value: 38.080000000000005
106
+ - type: precision_at_1
107
+ value: 21.693
108
+ - type: precision_at_10
109
+ value: 7.248
110
+ - type: precision_at_100
111
+ value: 0.9769999999999999
112
+ - type: precision_at_1000
113
+ value: 0.1
114
+ - type: precision_at_3
115
+ value: 13.632
116
+ - type: precision_at_5
117
+ value: 10.725
118
+ - type: recall_at_1
119
+ value: 21.693
120
+ - type: recall_at_10
121
+ value: 72.475
122
+ - type: recall_at_100
123
+ value: 97.653
124
+ - type: recall_at_1000
125
+ value: 99.57300000000001
126
+ - type: recall_at_3
127
+ value: 40.896
128
+ - type: recall_at_5
129
+ value: 53.627
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ name: MTEB ArxivClusteringP2P
134
+ type: mteb/arxiv-clustering-p2p
135
+ config: default
136
+ split: test
137
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
138
+ metrics:
139
+ - type: v_measure
140
+ value: 45.39242428696777
141
+ - task:
142
+ type: Clustering
143
+ dataset:
144
+ name: MTEB ArxivClusteringS2S
145
+ type: mteb/arxiv-clustering-s2s
146
+ config: default
147
+ split: test
148
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
149
+ metrics:
150
+ - type: v_measure
151
+ value: 36.675626784714
152
+ - task:
153
+ type: Reranking
154
+ dataset:
155
+ name: MTEB AskUbuntuDupQuestions
156
+ type: mteb/askubuntudupquestions-reranking
157
+ config: default
158
+ split: test
159
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
160
+ metrics:
161
+ - type: map
162
+ value: 62.247725694904034
163
+ - type: mrr
164
+ value: 74.91359978894604
165
+ - task:
166
+ type: STS
167
+ dataset:
168
+ name: MTEB BIOSSES
169
+ type: mteb/biosses-sts
170
+ config: default
171
+ split: test
172
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
173
+ metrics:
174
+ - type: cos_sim_pearson
175
+ value: 82.68003802970496
176
+ - type: cos_sim_spearman
177
+ value: 81.23438110096286
178
+ - type: euclidean_pearson
179
+ value: 81.87462986142582
180
+ - type: euclidean_spearman
181
+ value: 81.23438110096286
182
+ - type: manhattan_pearson
183
+ value: 81.61162566600755
184
+ - type: manhattan_spearman
185
+ value: 81.11329400456184
186
+ - task:
187
+ type: Classification
188
+ dataset:
189
+ name: MTEB Banking77Classification
190
+ type: mteb/banking77
191
+ config: default
192
+ split: test
193
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
194
+ metrics:
195
+ - type: accuracy
196
+ value: 84.01298701298701
197
+ - type: f1
198
+ value: 83.31690714969382
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ name: MTEB BiorxivClusteringP2P
203
+ type: mteb/biorxiv-clustering-p2p
204
+ config: default
205
+ split: test
206
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
207
+ metrics:
208
+ - type: v_measure
209
+ value: 37.050108150972086
210
+ - task:
211
+ type: Clustering
212
+ dataset:
213
+ name: MTEB BiorxivClusteringS2S
214
+ type: mteb/biorxiv-clustering-s2s
215
+ config: default
216
+ split: test
217
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
218
+ metrics:
219
+ - type: v_measure
220
+ value: 30.15731442819715
221
+ - task:
222
+ type: Retrieval
223
+ dataset:
224
+ name: MTEB CQADupstackAndroidRetrieval
225
+ type: BeIR/cqadupstack
226
+ config: default
227
+ split: test
228
+ revision: None
229
+ metrics:
230
+ - type: map_at_1
231
+ value: 31.391999999999996
232
+ - type: map_at_10
233
+ value: 42.597
234
+ - type: map_at_100
235
+ value: 44.07
236
+ - type: map_at_1000
237
+ value: 44.198
238
+ - type: map_at_3
239
+ value: 38.957
240
+ - type: map_at_5
241
+ value: 40.961
242
+ - type: mrr_at_1
243
+ value: 37.196
244
+ - type: mrr_at_10
245
+ value: 48.152
246
+ - type: mrr_at_100
247
+ value: 48.928
248
+ - type: mrr_at_1000
249
+ value: 48.964999999999996
250
+ - type: mrr_at_3
251
+ value: 45.446
252
+ - type: mrr_at_5
253
+ value: 47.205999999999996
254
+ - type: ndcg_at_1
255
+ value: 37.196
256
+ - type: ndcg_at_10
257
+ value: 49.089
258
+ - type: ndcg_at_100
259
+ value: 54.471000000000004
260
+ - type: ndcg_at_1000
261
+ value: 56.385
262
+ - type: ndcg_at_3
263
+ value: 43.699
264
+ - type: ndcg_at_5
265
+ value: 46.22
266
+ - type: precision_at_1
267
+ value: 37.196
268
+ - type: precision_at_10
269
+ value: 9.313
270
+ - type: precision_at_100
271
+ value: 1.478
272
+ - type: precision_at_1000
273
+ value: 0.198
274
+ - type: precision_at_3
275
+ value: 20.839
276
+ - type: precision_at_5
277
+ value: 14.936
278
+ - type: recall_at_1
279
+ value: 31.391999999999996
280
+ - type: recall_at_10
281
+ value: 61.876
282
+ - type: recall_at_100
283
+ value: 84.214
284
+ - type: recall_at_1000
285
+ value: 95.985
286
+ - type: recall_at_3
287
+ value: 46.6
288
+ - type: recall_at_5
289
+ value: 53.588
290
+ - type: map_at_1
291
+ value: 29.083
292
+ - type: map_at_10
293
+ value: 38.812999999999995
294
+ - type: map_at_100
295
+ value: 40.053
296
+ - type: map_at_1000
297
+ value: 40.188
298
+ - type: map_at_3
299
+ value: 36.111
300
+ - type: map_at_5
301
+ value: 37.519000000000005
302
+ - type: mrr_at_1
303
+ value: 36.497
304
+ - type: mrr_at_10
305
+ value: 44.85
306
+ - type: mrr_at_100
307
+ value: 45.546
308
+ - type: mrr_at_1000
309
+ value: 45.593
310
+ - type: mrr_at_3
311
+ value: 42.686
312
+ - type: mrr_at_5
313
+ value: 43.909
314
+ - type: ndcg_at_1
315
+ value: 36.497
316
+ - type: ndcg_at_10
317
+ value: 44.443
318
+ - type: ndcg_at_100
319
+ value: 48.979
320
+ - type: ndcg_at_1000
321
+ value: 51.154999999999994
322
+ - type: ndcg_at_3
323
+ value: 40.660000000000004
324
+ - type: ndcg_at_5
325
+ value: 42.193000000000005
326
+ - type: precision_at_1
327
+ value: 36.497
328
+ - type: precision_at_10
329
+ value: 8.433
330
+ - type: precision_at_100
331
+ value: 1.369
332
+ - type: precision_at_1000
333
+ value: 0.185
334
+ - type: precision_at_3
335
+ value: 19.894000000000002
336
+ - type: precision_at_5
337
+ value: 13.873
338
+ - type: recall_at_1
339
+ value: 29.083
340
+ - type: recall_at_10
341
+ value: 54.313
342
+ - type: recall_at_100
343
+ value: 73.792
344
+ - type: recall_at_1000
345
+ value: 87.629
346
+ - type: recall_at_3
347
+ value: 42.257
348
+ - type: recall_at_5
349
+ value: 47.066
350
+ - type: map_at_1
351
+ value: 38.556000000000004
352
+ - type: map_at_10
353
+ value: 50.698
354
+ - type: map_at_100
355
+ value: 51.705
356
+ - type: map_at_1000
357
+ value: 51.768
358
+ - type: map_at_3
359
+ value: 47.848
360
+ - type: map_at_5
361
+ value: 49.358000000000004
362
+ - type: mrr_at_1
363
+ value: 43.95
364
+ - type: mrr_at_10
365
+ value: 54.191
366
+ - type: mrr_at_100
367
+ value: 54.852999999999994
368
+ - type: mrr_at_1000
369
+ value: 54.885
370
+ - type: mrr_at_3
371
+ value: 51.954
372
+ - type: mrr_at_5
373
+ value: 53.13
374
+ - type: ndcg_at_1
375
+ value: 43.95
376
+ - type: ndcg_at_10
377
+ value: 56.516
378
+ - type: ndcg_at_100
379
+ value: 60.477000000000004
380
+ - type: ndcg_at_1000
381
+ value: 61.746
382
+ - type: ndcg_at_3
383
+ value: 51.601
384
+ - type: ndcg_at_5
385
+ value: 53.795
386
+ - type: precision_at_1
387
+ value: 43.95
388
+ - type: precision_at_10
389
+ value: 9.009
390
+ - type: precision_at_100
391
+ value: 1.189
392
+ - type: precision_at_1000
393
+ value: 0.135
394
+ - type: precision_at_3
395
+ value: 22.989
396
+ - type: precision_at_5
397
+ value: 15.473
398
+ - type: recall_at_1
399
+ value: 38.556000000000004
400
+ - type: recall_at_10
401
+ value: 70.159
402
+ - type: recall_at_100
403
+ value: 87.132
404
+ - type: recall_at_1000
405
+ value: 96.16
406
+ - type: recall_at_3
407
+ value: 56.906
408
+ - type: recall_at_5
409
+ value: 62.332
410
+ - type: map_at_1
411
+ value: 24.238
412
+ - type: map_at_10
413
+ value: 32.5
414
+ - type: map_at_100
415
+ value: 33.637
416
+ - type: map_at_1000
417
+ value: 33.719
418
+ - type: map_at_3
419
+ value: 30.026999999999997
420
+ - type: map_at_5
421
+ value: 31.555
422
+ - type: mrr_at_1
423
+ value: 26.328000000000003
424
+ - type: mrr_at_10
425
+ value: 34.44
426
+ - type: mrr_at_100
427
+ value: 35.455999999999996
428
+ - type: mrr_at_1000
429
+ value: 35.521
430
+ - type: mrr_at_3
431
+ value: 32.034
432
+ - type: mrr_at_5
433
+ value: 33.565
434
+ - type: ndcg_at_1
435
+ value: 26.328000000000003
436
+ - type: ndcg_at_10
437
+ value: 37.202
438
+ - type: ndcg_at_100
439
+ value: 42.728
440
+ - type: ndcg_at_1000
441
+ value: 44.792
442
+ - type: ndcg_at_3
443
+ value: 32.368
444
+ - type: ndcg_at_5
445
+ value: 35.008
446
+ - type: precision_at_1
447
+ value: 26.328000000000003
448
+ - type: precision_at_10
449
+ value: 5.7059999999999995
450
+ - type: precision_at_100
451
+ value: 0.8880000000000001
452
+ - type: precision_at_1000
453
+ value: 0.11100000000000002
454
+ - type: precision_at_3
455
+ value: 13.672
456
+ - type: precision_at_5
457
+ value: 9.74
458
+ - type: recall_at_1
459
+ value: 24.238
460
+ - type: recall_at_10
461
+ value: 49.829
462
+ - type: recall_at_100
463
+ value: 75.21
464
+ - type: recall_at_1000
465
+ value: 90.521
466
+ - type: recall_at_3
467
+ value: 36.867
468
+ - type: recall_at_5
469
+ value: 43.241
470
+ - type: map_at_1
471
+ value: 15.378
472
+ - type: map_at_10
473
+ value: 22.817999999999998
474
+ - type: map_at_100
475
+ value: 23.977999999999998
476
+ - type: map_at_1000
477
+ value: 24.108
478
+ - type: map_at_3
479
+ value: 20.719
480
+ - type: map_at_5
481
+ value: 21.889
482
+ - type: mrr_at_1
483
+ value: 19.03
484
+ - type: mrr_at_10
485
+ value: 27.022000000000002
486
+ - type: mrr_at_100
487
+ value: 28.011999999999997
488
+ - type: mrr_at_1000
489
+ value: 28.096
490
+ - type: mrr_at_3
491
+ value: 24.855
492
+ - type: mrr_at_5
493
+ value: 26.029999999999998
494
+ - type: ndcg_at_1
495
+ value: 19.03
496
+ - type: ndcg_at_10
497
+ value: 27.526
498
+ - type: ndcg_at_100
499
+ value: 33.040000000000006
500
+ - type: ndcg_at_1000
501
+ value: 36.187000000000005
502
+ - type: ndcg_at_3
503
+ value: 23.497
504
+ - type: ndcg_at_5
505
+ value: 25.334
506
+ - type: precision_at_1
507
+ value: 19.03
508
+ - type: precision_at_10
509
+ value: 4.963
510
+ - type: precision_at_100
511
+ value: 0.893
512
+ - type: precision_at_1000
513
+ value: 0.13
514
+ - type: precision_at_3
515
+ value: 11.360000000000001
516
+ - type: precision_at_5
517
+ value: 8.134
518
+ - type: recall_at_1
519
+ value: 15.378
520
+ - type: recall_at_10
521
+ value: 38.061
522
+ - type: recall_at_100
523
+ value: 61.754
524
+ - type: recall_at_1000
525
+ value: 84.259
526
+ - type: recall_at_3
527
+ value: 26.788
528
+ - type: recall_at_5
529
+ value: 31.326999999999998
530
+ - type: map_at_1
531
+ value: 27.511999999999997
532
+ - type: map_at_10
533
+ value: 37.429
534
+ - type: map_at_100
535
+ value: 38.818000000000005
536
+ - type: map_at_1000
537
+ value: 38.924
538
+ - type: map_at_3
539
+ value: 34.625
540
+ - type: map_at_5
541
+ value: 36.064
542
+ - type: mrr_at_1
543
+ value: 33.300999999999995
544
+ - type: mrr_at_10
545
+ value: 43.036
546
+ - type: mrr_at_100
547
+ value: 43.894
548
+ - type: mrr_at_1000
549
+ value: 43.936
550
+ - type: mrr_at_3
551
+ value: 40.825
552
+ - type: mrr_at_5
553
+ value: 42.028
554
+ - type: ndcg_at_1
555
+ value: 33.300999999999995
556
+ - type: ndcg_at_10
557
+ value: 43.229
558
+ - type: ndcg_at_100
559
+ value: 48.992000000000004
560
+ - type: ndcg_at_1000
561
+ value: 51.02100000000001
562
+ - type: ndcg_at_3
563
+ value: 38.794000000000004
564
+ - type: ndcg_at_5
565
+ value: 40.65
566
+ - type: precision_at_1
567
+ value: 33.300999999999995
568
+ - type: precision_at_10
569
+ value: 7.777000000000001
570
+ - type: precision_at_100
571
+ value: 1.269
572
+ - type: precision_at_1000
573
+ value: 0.163
574
+ - type: precision_at_3
575
+ value: 18.351
576
+ - type: precision_at_5
577
+ value: 12.762
578
+ - type: recall_at_1
579
+ value: 27.511999999999997
580
+ - type: recall_at_10
581
+ value: 54.788000000000004
582
+ - type: recall_at_100
583
+ value: 79.105
584
+ - type: recall_at_1000
585
+ value: 92.49199999999999
586
+ - type: recall_at_3
587
+ value: 41.924
588
+ - type: recall_at_5
589
+ value: 47.026
590
+ - type: map_at_1
591
+ value: 24.117
592
+ - type: map_at_10
593
+ value: 33.32
594
+ - type: map_at_100
595
+ value: 34.677
596
+ - type: map_at_1000
597
+ value: 34.78
598
+ - type: map_at_3
599
+ value: 30.233999999999998
600
+ - type: map_at_5
601
+ value: 31.668000000000003
602
+ - type: mrr_at_1
603
+ value: 29.566
604
+ - type: mrr_at_10
605
+ value: 38.244
606
+ - type: mrr_at_100
607
+ value: 39.245000000000005
608
+ - type: mrr_at_1000
609
+ value: 39.296
610
+ - type: mrr_at_3
611
+ value: 35.864000000000004
612
+ - type: mrr_at_5
613
+ value: 36.919999999999995
614
+ - type: ndcg_at_1
615
+ value: 29.566
616
+ - type: ndcg_at_10
617
+ value: 39.127
618
+ - type: ndcg_at_100
619
+ value: 44.989000000000004
620
+ - type: ndcg_at_1000
621
+ value: 47.189
622
+ - type: ndcg_at_3
623
+ value: 34.039
624
+ - type: ndcg_at_5
625
+ value: 35.744
626
+ - type: precision_at_1
627
+ value: 29.566
628
+ - type: precision_at_10
629
+ value: 7.385999999999999
630
+ - type: precision_at_100
631
+ value: 1.204
632
+ - type: precision_at_1000
633
+ value: 0.158
634
+ - type: precision_at_3
635
+ value: 16.286
636
+ - type: precision_at_5
637
+ value: 11.484
638
+ - type: recall_at_1
639
+ value: 24.117
640
+ - type: recall_at_10
641
+ value: 51.559999999999995
642
+ - type: recall_at_100
643
+ value: 77.104
644
+ - type: recall_at_1000
645
+ value: 91.79899999999999
646
+ - type: recall_at_3
647
+ value: 36.82
648
+ - type: recall_at_5
649
+ value: 41.453
650
+ - type: map_at_1
651
+ value: 25.17625
652
+ - type: map_at_10
653
+ value: 34.063916666666664
654
+ - type: map_at_100
655
+ value: 35.255500000000005
656
+ - type: map_at_1000
657
+ value: 35.37275
658
+ - type: map_at_3
659
+ value: 31.351666666666667
660
+ - type: map_at_5
661
+ value: 32.80608333333333
662
+ - type: mrr_at_1
663
+ value: 29.59783333333333
664
+ - type: mrr_at_10
665
+ value: 38.0925
666
+ - type: mrr_at_100
667
+ value: 38.957249999999995
668
+ - type: mrr_at_1000
669
+ value: 39.01608333333333
670
+ - type: mrr_at_3
671
+ value: 35.77625
672
+ - type: mrr_at_5
673
+ value: 37.04991666666667
674
+ - type: ndcg_at_1
675
+ value: 29.59783333333333
676
+ - type: ndcg_at_10
677
+ value: 39.343666666666664
678
+ - type: ndcg_at_100
679
+ value: 44.488249999999994
680
+ - type: ndcg_at_1000
681
+ value: 46.83358333333334
682
+ - type: ndcg_at_3
683
+ value: 34.69708333333333
684
+ - type: ndcg_at_5
685
+ value: 36.75075
686
+ - type: precision_at_1
687
+ value: 29.59783333333333
688
+ - type: precision_at_10
689
+ value: 6.884083333333332
690
+ - type: precision_at_100
691
+ value: 1.114
692
+ - type: precision_at_1000
693
+ value: 0.15108333333333332
694
+ - type: precision_at_3
695
+ value: 15.965250000000003
696
+ - type: precision_at_5
697
+ value: 11.246500000000001
698
+ - type: recall_at_1
699
+ value: 25.17625
700
+ - type: recall_at_10
701
+ value: 51.015999999999984
702
+ - type: recall_at_100
703
+ value: 73.60174999999998
704
+ - type: recall_at_1000
705
+ value: 89.849
706
+ - type: recall_at_3
707
+ value: 37.88399999999999
708
+ - type: recall_at_5
709
+ value: 43.24541666666666
710
+ - type: map_at_1
711
+ value: 24.537
712
+ - type: map_at_10
713
+ value: 31.081999999999997
714
+ - type: map_at_100
715
+ value: 32.042
716
+ - type: map_at_1000
717
+ value: 32.141
718
+ - type: map_at_3
719
+ value: 29.137
720
+ - type: map_at_5
721
+ value: 30.079
722
+ - type: mrr_at_1
723
+ value: 27.454
724
+ - type: mrr_at_10
725
+ value: 33.694
726
+ - type: mrr_at_100
727
+ value: 34.579
728
+ - type: mrr_at_1000
729
+ value: 34.649
730
+ - type: mrr_at_3
731
+ value: 32.004
732
+ - type: mrr_at_5
733
+ value: 32.794000000000004
734
+ - type: ndcg_at_1
735
+ value: 27.454
736
+ - type: ndcg_at_10
737
+ value: 34.915
738
+ - type: ndcg_at_100
739
+ value: 39.641
740
+ - type: ndcg_at_1000
741
+ value: 42.105
742
+ - type: ndcg_at_3
743
+ value: 31.276
744
+ - type: ndcg_at_5
745
+ value: 32.65
746
+ - type: precision_at_1
747
+ value: 27.454
748
+ - type: precision_at_10
749
+ value: 5.337
750
+ - type: precision_at_100
751
+ value: 0.8250000000000001
752
+ - type: precision_at_1000
753
+ value: 0.11199999999999999
754
+ - type: precision_at_3
755
+ value: 13.241
756
+ - type: precision_at_5
757
+ value: 8.895999999999999
758
+ - type: recall_at_1
759
+ value: 24.537
760
+ - type: recall_at_10
761
+ value: 44.324999999999996
762
+ - type: recall_at_100
763
+ value: 65.949
764
+ - type: recall_at_1000
765
+ value: 84.017
766
+ - type: recall_at_3
767
+ value: 33.857
768
+ - type: recall_at_5
769
+ value: 37.316
770
+ - type: map_at_1
771
+ value: 17.122
772
+ - type: map_at_10
773
+ value: 24.32
774
+ - type: map_at_100
775
+ value: 25.338
776
+ - type: map_at_1000
777
+ value: 25.462
778
+ - type: map_at_3
779
+ value: 22.064
780
+ - type: map_at_5
781
+ value: 23.322000000000003
782
+ - type: mrr_at_1
783
+ value: 20.647
784
+ - type: mrr_at_10
785
+ value: 27.858
786
+ - type: mrr_at_100
787
+ value: 28.743999999999996
788
+ - type: mrr_at_1000
789
+ value: 28.819
790
+ - type: mrr_at_3
791
+ value: 25.769
792
+ - type: mrr_at_5
793
+ value: 26.964
794
+ - type: ndcg_at_1
795
+ value: 20.647
796
+ - type: ndcg_at_10
797
+ value: 28.849999999999998
798
+ - type: ndcg_at_100
799
+ value: 33.849000000000004
800
+ - type: ndcg_at_1000
801
+ value: 36.802
802
+ - type: ndcg_at_3
803
+ value: 24.799
804
+ - type: ndcg_at_5
805
+ value: 26.682
806
+ - type: precision_at_1
807
+ value: 20.647
808
+ - type: precision_at_10
809
+ value: 5.2170000000000005
810
+ - type: precision_at_100
811
+ value: 0.906
812
+ - type: precision_at_1000
813
+ value: 0.134
814
+ - type: precision_at_3
815
+ value: 11.769
816
+ - type: precision_at_5
817
+ value: 8.486
818
+ - type: recall_at_1
819
+ value: 17.122
820
+ - type: recall_at_10
821
+ value: 38.999
822
+ - type: recall_at_100
823
+ value: 61.467000000000006
824
+ - type: recall_at_1000
825
+ value: 82.716
826
+ - type: recall_at_3
827
+ value: 27.601
828
+ - type: recall_at_5
829
+ value: 32.471
830
+ - type: map_at_1
831
+ value: 24.396
832
+ - type: map_at_10
833
+ value: 33.415
834
+ - type: map_at_100
835
+ value: 34.521
836
+ - type: map_at_1000
837
+ value: 34.631
838
+ - type: map_at_3
839
+ value: 30.703999999999997
840
+ - type: map_at_5
841
+ value: 32.166
842
+ - type: mrr_at_1
843
+ value: 28.825
844
+ - type: mrr_at_10
845
+ value: 37.397000000000006
846
+ - type: mrr_at_100
847
+ value: 38.286
848
+ - type: mrr_at_1000
849
+ value: 38.346000000000004
850
+ - type: mrr_at_3
851
+ value: 35.028
852
+ - type: mrr_at_5
853
+ value: 36.32
854
+ - type: ndcg_at_1
855
+ value: 28.825
856
+ - type: ndcg_at_10
857
+ value: 38.656
858
+ - type: ndcg_at_100
859
+ value: 43.856
860
+ - type: ndcg_at_1000
861
+ value: 46.31
862
+ - type: ndcg_at_3
863
+ value: 33.793
864
+ - type: ndcg_at_5
865
+ value: 35.909
866
+ - type: precision_at_1
867
+ value: 28.825
868
+ - type: precision_at_10
869
+ value: 6.567
870
+ - type: precision_at_100
871
+ value: 1.0330000000000001
872
+ - type: precision_at_1000
873
+ value: 0.135
874
+ - type: precision_at_3
875
+ value: 15.516
876
+ - type: precision_at_5
877
+ value: 10.914
878
+ - type: recall_at_1
879
+ value: 24.396
880
+ - type: recall_at_10
881
+ value: 50.747
882
+ - type: recall_at_100
883
+ value: 73.477
884
+ - type: recall_at_1000
885
+ value: 90.801
886
+ - type: recall_at_3
887
+ value: 37.1
888
+ - type: recall_at_5
889
+ value: 42.589
890
+ - type: map_at_1
891
+ value: 25.072
892
+ - type: map_at_10
893
+ value: 34.307
894
+ - type: map_at_100
895
+ value: 35.725
896
+ - type: map_at_1000
897
+ value: 35.943999999999996
898
+ - type: map_at_3
899
+ value: 30.906
900
+ - type: map_at_5
901
+ value: 32.818000000000005
902
+ - type: mrr_at_1
903
+ value: 29.644
904
+ - type: mrr_at_10
905
+ value: 38.673
906
+ - type: mrr_at_100
907
+ value: 39.459
908
+ - type: mrr_at_1000
909
+ value: 39.527
910
+ - type: mrr_at_3
911
+ value: 35.771
912
+ - type: mrr_at_5
913
+ value: 37.332
914
+ - type: ndcg_at_1
915
+ value: 29.644
916
+ - type: ndcg_at_10
917
+ value: 40.548
918
+ - type: ndcg_at_100
919
+ value: 45.678999999999995
920
+ - type: ndcg_at_1000
921
+ value: 48.488
922
+ - type: ndcg_at_3
923
+ value: 34.887
924
+ - type: ndcg_at_5
925
+ value: 37.543
926
+ - type: precision_at_1
927
+ value: 29.644
928
+ - type: precision_at_10
929
+ value: 7.688000000000001
930
+ - type: precision_at_100
931
+ value: 1.482
932
+ - type: precision_at_1000
933
+ value: 0.23600000000000002
934
+ - type: precision_at_3
935
+ value: 16.206
936
+ - type: precision_at_5
937
+ value: 12.016
938
+ - type: recall_at_1
939
+ value: 25.072
940
+ - type: recall_at_10
941
+ value: 53.478
942
+ - type: recall_at_100
943
+ value: 76.07300000000001
944
+ - type: recall_at_1000
945
+ value: 93.884
946
+ - type: recall_at_3
947
+ value: 37.583
948
+ - type: recall_at_5
949
+ value: 44.464
950
+ - type: map_at_1
951
+ value: 20.712
952
+ - type: map_at_10
953
+ value: 27.467999999999996
954
+ - type: map_at_100
955
+ value: 28.502
956
+ - type: map_at_1000
957
+ value: 28.610000000000003
958
+ - type: map_at_3
959
+ value: 24.887999999999998
960
+ - type: map_at_5
961
+ value: 26.273999999999997
962
+ - type: mrr_at_1
963
+ value: 22.736
964
+ - type: mrr_at_10
965
+ value: 29.553
966
+ - type: mrr_at_100
967
+ value: 30.485
968
+ - type: mrr_at_1000
969
+ value: 30.56
970
+ - type: mrr_at_3
971
+ value: 27.078999999999997
972
+ - type: mrr_at_5
973
+ value: 28.401
974
+ - type: ndcg_at_1
975
+ value: 22.736
976
+ - type: ndcg_at_10
977
+ value: 32.023
978
+ - type: ndcg_at_100
979
+ value: 37.158
980
+ - type: ndcg_at_1000
981
+ value: 39.823
982
+ - type: ndcg_at_3
983
+ value: 26.951999999999998
984
+ - type: ndcg_at_5
985
+ value: 29.281000000000002
986
+ - type: precision_at_1
987
+ value: 22.736
988
+ - type: precision_at_10
989
+ value: 5.213
990
+ - type: precision_at_100
991
+ value: 0.832
992
+ - type: precision_at_1000
993
+ value: 0.116
994
+ - type: precision_at_3
995
+ value: 11.459999999999999
996
+ - type: precision_at_5
997
+ value: 8.244
998
+ - type: recall_at_1
999
+ value: 20.712
1000
+ - type: recall_at_10
1001
+ value: 44.057
1002
+ - type: recall_at_100
1003
+ value: 67.944
1004
+ - type: recall_at_1000
1005
+ value: 87.925
1006
+ - type: recall_at_3
1007
+ value: 30.305
1008
+ - type: recall_at_5
1009
+ value: 36.071999999999996
1010
+ - task:
1011
+ type: Retrieval
1012
+ dataset:
1013
+ name: MTEB ClimateFEVER
1014
+ type: climate-fever
1015
+ config: default
1016
+ split: test
1017
+ revision: None
1018
+ metrics:
1019
+ - type: map_at_1
1020
+ value: 10.181999999999999
1021
+ - type: map_at_10
1022
+ value: 16.66
1023
+ - type: map_at_100
1024
+ value: 18.273
1025
+ - type: map_at_1000
1026
+ value: 18.45
1027
+ - type: map_at_3
1028
+ value: 14.141
1029
+ - type: map_at_5
1030
+ value: 15.455
1031
+ - type: mrr_at_1
1032
+ value: 22.15
1033
+ - type: mrr_at_10
1034
+ value: 32.062000000000005
1035
+ - type: mrr_at_100
1036
+ value: 33.116
1037
+ - type: mrr_at_1000
1038
+ value: 33.168
1039
+ - type: mrr_at_3
1040
+ value: 28.827
1041
+ - type: mrr_at_5
1042
+ value: 30.892999999999997
1043
+ - type: ndcg_at_1
1044
+ value: 22.15
1045
+ - type: ndcg_at_10
1046
+ value: 23.532
1047
+ - type: ndcg_at_100
1048
+ value: 30.358
1049
+ - type: ndcg_at_1000
1050
+ value: 33.783
1051
+ - type: ndcg_at_3
1052
+ value: 19.222
1053
+ - type: ndcg_at_5
1054
+ value: 20.919999999999998
1055
+ - type: precision_at_1
1056
+ value: 22.15
1057
+ - type: precision_at_10
1058
+ value: 7.185999999999999
1059
+ - type: precision_at_100
1060
+ value: 1.433
1061
+ - type: precision_at_1000
1062
+ value: 0.207
1063
+ - type: precision_at_3
1064
+ value: 13.941
1065
+ - type: precision_at_5
1066
+ value: 10.906
1067
+ - type: recall_at_1
1068
+ value: 10.181999999999999
1069
+ - type: recall_at_10
1070
+ value: 28.104000000000003
1071
+ - type: recall_at_100
1072
+ value: 51.998999999999995
1073
+ - type: recall_at_1000
1074
+ value: 71.311
1075
+ - type: recall_at_3
1076
+ value: 17.698
1077
+ - type: recall_at_5
1078
+ value: 22.262999999999998
1079
+ - task:
1080
+ type: Retrieval
1081
+ dataset:
1082
+ name: MTEB DBPedia
1083
+ type: dbpedia-entity
1084
+ config: default
1085
+ split: test
1086
+ revision: None
1087
+ metrics:
1088
+ - type: map_at_1
1089
+ value: 6.669
1090
+ - type: map_at_10
1091
+ value: 15.552
1092
+ - type: map_at_100
1093
+ value: 21.865000000000002
1094
+ - type: map_at_1000
1095
+ value: 23.268
1096
+ - type: map_at_3
1097
+ value: 11.309
1098
+ - type: map_at_5
1099
+ value: 13.084000000000001
1100
+ - type: mrr_at_1
1101
+ value: 55.50000000000001
1102
+ - type: mrr_at_10
1103
+ value: 66.46600000000001
1104
+ - type: mrr_at_100
1105
+ value: 66.944
1106
+ - type: mrr_at_1000
1107
+ value: 66.956
1108
+ - type: mrr_at_3
1109
+ value: 64.542
1110
+ - type: mrr_at_5
1111
+ value: 65.717
1112
+ - type: ndcg_at_1
1113
+ value: 44.75
1114
+ - type: ndcg_at_10
1115
+ value: 35.049
1116
+ - type: ndcg_at_100
1117
+ value: 39.073
1118
+ - type: ndcg_at_1000
1119
+ value: 46.208
1120
+ - type: ndcg_at_3
1121
+ value: 39.525
1122
+ - type: ndcg_at_5
1123
+ value: 37.156
1124
+ - type: precision_at_1
1125
+ value: 55.50000000000001
1126
+ - type: precision_at_10
1127
+ value: 27.800000000000004
1128
+ - type: precision_at_100
1129
+ value: 9.013
1130
+ - type: precision_at_1000
1131
+ value: 1.8800000000000001
1132
+ - type: precision_at_3
1133
+ value: 42.667
1134
+ - type: precision_at_5
1135
+ value: 36.0
1136
+ - type: recall_at_1
1137
+ value: 6.669
1138
+ - type: recall_at_10
1139
+ value: 21.811
1140
+ - type: recall_at_100
1141
+ value: 45.112
1142
+ - type: recall_at_1000
1143
+ value: 67.806
1144
+ - type: recall_at_3
1145
+ value: 13.373
1146
+ - type: recall_at_5
1147
+ value: 16.615
1148
+ - task:
1149
+ type: Classification
1150
+ dataset:
1151
+ name: MTEB EmotionClassification
1152
+ type: mteb/emotion
1153
+ config: default
1154
+ split: test
1155
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1156
+ metrics:
1157
+ - type: accuracy
1158
+ value: 48.769999999999996
1159
+ - type: f1
1160
+ value: 42.91448356376592
1161
+ - task:
1162
+ type: Retrieval
1163
+ dataset:
1164
+ name: MTEB FEVER
1165
+ type: fever
1166
+ config: default
1167
+ split: test
1168
+ revision: None
1169
+ metrics:
1170
+ - type: map_at_1
1171
+ value: 54.013
1172
+ - type: map_at_10
1173
+ value: 66.239
1174
+ - type: map_at_100
1175
+ value: 66.62599999999999
1176
+ - type: map_at_1000
1177
+ value: 66.644
1178
+ - type: map_at_3
1179
+ value: 63.965
1180
+ - type: map_at_5
1181
+ value: 65.45400000000001
1182
+ - type: mrr_at_1
1183
+ value: 58.221000000000004
1184
+ - type: mrr_at_10
1185
+ value: 70.43700000000001
1186
+ - type: mrr_at_100
1187
+ value: 70.744
1188
+ - type: mrr_at_1000
1189
+ value: 70.75099999999999
1190
+ - type: mrr_at_3
1191
+ value: 68.284
1192
+ - type: mrr_at_5
1193
+ value: 69.721
1194
+ - type: ndcg_at_1
1195
+ value: 58.221000000000004
1196
+ - type: ndcg_at_10
1197
+ value: 72.327
1198
+ - type: ndcg_at_100
1199
+ value: 73.953
1200
+ - type: ndcg_at_1000
1201
+ value: 74.312
1202
+ - type: ndcg_at_3
1203
+ value: 68.062
1204
+ - type: ndcg_at_5
1205
+ value: 70.56400000000001
1206
+ - type: precision_at_1
1207
+ value: 58.221000000000004
1208
+ - type: precision_at_10
1209
+ value: 9.521
1210
+ - type: precision_at_100
1211
+ value: 1.045
1212
+ - type: precision_at_1000
1213
+ value: 0.109
1214
+ - type: precision_at_3
1215
+ value: 27.348
1216
+ - type: precision_at_5
1217
+ value: 17.794999999999998
1218
+ - type: recall_at_1
1219
+ value: 54.013
1220
+ - type: recall_at_10
1221
+ value: 86.957
1222
+ - type: recall_at_100
1223
+ value: 93.911
1224
+ - type: recall_at_1000
1225
+ value: 96.38
1226
+ - type: recall_at_3
1227
+ value: 75.555
1228
+ - type: recall_at_5
1229
+ value: 81.671
1230
+ - task:
1231
+ type: Retrieval
1232
+ dataset:
1233
+ name: MTEB FiQA2018
1234
+ type: fiqa
1235
+ config: default
1236
+ split: test
1237
+ revision: None
1238
+ metrics:
1239
+ - type: map_at_1
1240
+ value: 21.254
1241
+ - type: map_at_10
1242
+ value: 33.723
1243
+ - type: map_at_100
1244
+ value: 35.574
1245
+ - type: map_at_1000
1246
+ value: 35.730000000000004
1247
+ - type: map_at_3
1248
+ value: 29.473
1249
+ - type: map_at_5
1250
+ value: 31.543
1251
+ - type: mrr_at_1
1252
+ value: 41.358
1253
+ - type: mrr_at_10
1254
+ value: 49.498
1255
+ - type: mrr_at_100
1256
+ value: 50.275999999999996
1257
+ - type: mrr_at_1000
1258
+ value: 50.308
1259
+ - type: mrr_at_3
1260
+ value: 47.016000000000005
1261
+ - type: mrr_at_5
1262
+ value: 48.336
1263
+ - type: ndcg_at_1
1264
+ value: 41.358
1265
+ - type: ndcg_at_10
1266
+ value: 41.579
1267
+ - type: ndcg_at_100
1268
+ value: 48.455
1269
+ - type: ndcg_at_1000
1270
+ value: 51.165000000000006
1271
+ - type: ndcg_at_3
1272
+ value: 37.681
1273
+ - type: ndcg_at_5
1274
+ value: 38.49
1275
+ - type: precision_at_1
1276
+ value: 41.358
1277
+ - type: precision_at_10
1278
+ value: 11.543000000000001
1279
+ - type: precision_at_100
1280
+ value: 1.87
1281
+ - type: precision_at_1000
1282
+ value: 0.23600000000000002
1283
+ - type: precision_at_3
1284
+ value: 24.743000000000002
1285
+ - type: precision_at_5
1286
+ value: 17.994
1287
+ - type: recall_at_1
1288
+ value: 21.254
1289
+ - type: recall_at_10
1290
+ value: 48.698
1291
+ - type: recall_at_100
1292
+ value: 74.588
1293
+ - type: recall_at_1000
1294
+ value: 91.00200000000001
1295
+ - type: recall_at_3
1296
+ value: 33.939
1297
+ - type: recall_at_5
1298
+ value: 39.367000000000004
1299
+ - task:
1300
+ type: Retrieval
1301
+ dataset:
1302
+ name: MTEB HotpotQA
1303
+ type: hotpotqa
1304
+ config: default
1305
+ split: test
1306
+ revision: None
1307
+ metrics:
1308
+ - type: map_at_1
1309
+ value: 35.922
1310
+ - type: map_at_10
1311
+ value: 52.32599999999999
1312
+ - type: map_at_100
1313
+ value: 53.18000000000001
1314
+ - type: map_at_1000
1315
+ value: 53.245
1316
+ - type: map_at_3
1317
+ value: 49.294
1318
+ - type: map_at_5
1319
+ value: 51.202999999999996
1320
+ - type: mrr_at_1
1321
+ value: 71.843
1322
+ - type: mrr_at_10
1323
+ value: 78.24600000000001
1324
+ - type: mrr_at_100
1325
+ value: 78.515
1326
+ - type: mrr_at_1000
1327
+ value: 78.527
1328
+ - type: mrr_at_3
1329
+ value: 77.17500000000001
1330
+ - type: mrr_at_5
1331
+ value: 77.852
1332
+ - type: ndcg_at_1
1333
+ value: 71.843
1334
+ - type: ndcg_at_10
1335
+ value: 61.379
1336
+ - type: ndcg_at_100
1337
+ value: 64.535
1338
+ - type: ndcg_at_1000
1339
+ value: 65.888
1340
+ - type: ndcg_at_3
1341
+ value: 56.958
1342
+ - type: ndcg_at_5
1343
+ value: 59.434
1344
+ - type: precision_at_1
1345
+ value: 71.843
1346
+ - type: precision_at_10
1347
+ value: 12.686
1348
+ - type: precision_at_100
1349
+ value: 1.517
1350
+ - type: precision_at_1000
1351
+ value: 0.16999999999999998
1352
+ - type: precision_at_3
1353
+ value: 35.778
1354
+ - type: precision_at_5
1355
+ value: 23.422
1356
+ - type: recall_at_1
1357
+ value: 35.922
1358
+ - type: recall_at_10
1359
+ value: 63.43
1360
+ - type: recall_at_100
1361
+ value: 75.868
1362
+ - type: recall_at_1000
1363
+ value: 84.88900000000001
1364
+ - type: recall_at_3
1365
+ value: 53.666000000000004
1366
+ - type: recall_at_5
1367
+ value: 58.555
1368
+ - task:
1369
+ type: Classification
1370
+ dataset:
1371
+ name: MTEB ImdbClassification
1372
+ type: mteb/imdb
1373
+ config: default
1374
+ split: test
1375
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1376
+ metrics:
1377
+ - type: accuracy
1378
+ value: 79.4408
1379
+ - type: ap
1380
+ value: 73.52820871620366
1381
+ - type: f1
1382
+ value: 79.36240238685001
1383
+ - task:
1384
+ type: Retrieval
1385
+ dataset:
1386
+ name: MTEB MSMARCO
1387
+ type: msmarco
1388
+ config: default
1389
+ split: dev
1390
+ revision: None
1391
+ metrics:
1392
+ - type: map_at_1
1393
+ value: 21.826999999999998
1394
+ - type: map_at_10
1395
+ value: 34.04
1396
+ - type: map_at_100
1397
+ value: 35.226
1398
+ - type: map_at_1000
1399
+ value: 35.275
1400
+ - type: map_at_3
1401
+ value: 30.165999999999997
1402
+ - type: map_at_5
1403
+ value: 32.318000000000005
1404
+ - type: mrr_at_1
1405
+ value: 22.464000000000002
1406
+ - type: mrr_at_10
1407
+ value: 34.631
1408
+ - type: mrr_at_100
1409
+ value: 35.752
1410
+ - type: mrr_at_1000
1411
+ value: 35.795
1412
+ - type: mrr_at_3
1413
+ value: 30.798
1414
+ - type: mrr_at_5
1415
+ value: 32.946999999999996
1416
+ - type: ndcg_at_1
1417
+ value: 22.464000000000002
1418
+ - type: ndcg_at_10
1419
+ value: 40.919
1420
+ - type: ndcg_at_100
1421
+ value: 46.632
1422
+ - type: ndcg_at_1000
1423
+ value: 47.833
1424
+ - type: ndcg_at_3
1425
+ value: 32.992
1426
+ - type: ndcg_at_5
1427
+ value: 36.834
1428
+ - type: precision_at_1
1429
+ value: 22.464000000000002
1430
+ - type: precision_at_10
1431
+ value: 6.494
1432
+ - type: precision_at_100
1433
+ value: 0.9369999999999999
1434
+ - type: precision_at_1000
1435
+ value: 0.104
1436
+ - type: precision_at_3
1437
+ value: 14.021
1438
+ - type: precision_at_5
1439
+ value: 10.347000000000001
1440
+ - type: recall_at_1
1441
+ value: 21.826999999999998
1442
+ - type: recall_at_10
1443
+ value: 62.132
1444
+ - type: recall_at_100
1445
+ value: 88.55199999999999
1446
+ - type: recall_at_1000
1447
+ value: 97.707
1448
+ - type: recall_at_3
1449
+ value: 40.541
1450
+ - type: recall_at_5
1451
+ value: 49.739
1452
+ - task:
1453
+ type: Classification
1454
+ dataset:
1455
+ name: MTEB MTOPDomainClassification (en)
1456
+ type: mteb/mtop_domain
1457
+ config: en
1458
+ split: test
1459
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1460
+ metrics:
1461
+ - type: accuracy
1462
+ value: 95.68399452804377
1463
+ - type: f1
1464
+ value: 95.25490609832268
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ name: MTEB MTOPIntentClassification (en)
1469
+ type: mteb/mtop_intent
1470
+ config: en
1471
+ split: test
1472
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 83.15321477428182
1476
+ - type: f1
1477
+ value: 60.35476439087966
1478
+ - task:
1479
+ type: Classification
1480
+ dataset:
1481
+ name: MTEB MassiveIntentClassification (en)
1482
+ type: mteb/amazon_massive_intent
1483
+ config: en
1484
+ split: test
1485
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1486
+ metrics:
1487
+ - type: accuracy
1488
+ value: 71.92669804976462
1489
+ - type: f1
1490
+ value: 69.22815107207565
1491
+ - task:
1492
+ type: Classification
1493
+ dataset:
1494
+ name: MTEB MassiveScenarioClassification (en)
1495
+ type: mteb/amazon_massive_scenario
1496
+ config: en
1497
+ split: test
1498
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1499
+ metrics:
1500
+ - type: accuracy
1501
+ value: 74.4855413584398
1502
+ - type: f1
1503
+ value: 72.92107516103387
1504
+ - task:
1505
+ type: Clustering
1506
+ dataset:
1507
+ name: MTEB MedrxivClusteringP2P
1508
+ type: mteb/medrxiv-clustering-p2p
1509
+ config: default
1510
+ split: test
1511
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1512
+ metrics:
1513
+ - type: v_measure
1514
+ value: 32.412679360205544
1515
+ - task:
1516
+ type: Clustering
1517
+ dataset:
1518
+ name: MTEB MedrxivClusteringS2S
1519
+ type: mteb/medrxiv-clustering-s2s
1520
+ config: default
1521
+ split: test
1522
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1523
+ metrics:
1524
+ - type: v_measure
1525
+ value: 28.09211869875204
1526
+ - task:
1527
+ type: Reranking
1528
+ dataset:
1529
+ name: MTEB MindSmallReranking
1530
+ type: mteb/mind_small
1531
+ config: default
1532
+ split: test
1533
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1534
+ metrics:
1535
+ - type: map
1536
+ value: 30.540919056982545
1537
+ - type: mrr
1538
+ value: 31.529904607063536
1539
+ - task:
1540
+ type: Retrieval
1541
+ dataset:
1542
+ name: MTEB NFCorpus
1543
+ type: nfcorpus
1544
+ config: default
1545
+ split: test
1546
+ revision: None
1547
+ metrics:
1548
+ - type: map_at_1
1549
+ value: 5.745
1550
+ - type: map_at_10
1551
+ value: 12.013
1552
+ - type: map_at_100
1553
+ value: 15.040000000000001
1554
+ - type: map_at_1000
1555
+ value: 16.427
1556
+ - type: map_at_3
1557
+ value: 8.841000000000001
1558
+ - type: map_at_5
1559
+ value: 10.289
1560
+ - type: mrr_at_1
1561
+ value: 45.201
1562
+ - type: mrr_at_10
1563
+ value: 53.483999999999995
1564
+ - type: mrr_at_100
1565
+ value: 54.20700000000001
1566
+ - type: mrr_at_1000
1567
+ value: 54.252
1568
+ - type: mrr_at_3
1569
+ value: 51.29
1570
+ - type: mrr_at_5
1571
+ value: 52.73
1572
+ - type: ndcg_at_1
1573
+ value: 43.808
1574
+ - type: ndcg_at_10
1575
+ value: 32.445
1576
+ - type: ndcg_at_100
1577
+ value: 30.031000000000002
1578
+ - type: ndcg_at_1000
1579
+ value: 39.007
1580
+ - type: ndcg_at_3
1581
+ value: 37.204
1582
+ - type: ndcg_at_5
1583
+ value: 35.07
1584
+ - type: precision_at_1
1585
+ value: 45.201
1586
+ - type: precision_at_10
1587
+ value: 23.684
1588
+ - type: precision_at_100
1589
+ value: 7.600999999999999
1590
+ - type: precision_at_1000
1591
+ value: 2.043
1592
+ - type: precision_at_3
1593
+ value: 33.953
1594
+ - type: precision_at_5
1595
+ value: 29.412
1596
+ - type: recall_at_1
1597
+ value: 5.745
1598
+ - type: recall_at_10
1599
+ value: 16.168
1600
+ - type: recall_at_100
1601
+ value: 30.875999999999998
1602
+ - type: recall_at_1000
1603
+ value: 62.686
1604
+ - type: recall_at_3
1605
+ value: 9.75
1606
+ - type: recall_at_5
1607
+ value: 12.413
1608
+ - task:
1609
+ type: Retrieval
1610
+ dataset:
1611
+ name: MTEB NQ
1612
+ type: nq
1613
+ config: default
1614
+ split: test
1615
+ revision: None
1616
+ metrics:
1617
+ - type: map_at_1
1618
+ value: 37.828
1619
+ - type: map_at_10
1620
+ value: 53.239000000000004
1621
+ - type: map_at_100
1622
+ value: 54.035999999999994
1623
+ - type: map_at_1000
1624
+ value: 54.067
1625
+ - type: map_at_3
1626
+ value: 49.289
1627
+ - type: map_at_5
1628
+ value: 51.784
1629
+ - type: mrr_at_1
1630
+ value: 42.497
1631
+ - type: mrr_at_10
1632
+ value: 55.916999999999994
1633
+ - type: mrr_at_100
1634
+ value: 56.495
1635
+ - type: mrr_at_1000
1636
+ value: 56.516999999999996
1637
+ - type: mrr_at_3
1638
+ value: 52.800000000000004
1639
+ - type: mrr_at_5
1640
+ value: 54.722
1641
+ - type: ndcg_at_1
1642
+ value: 42.468
1643
+ - type: ndcg_at_10
1644
+ value: 60.437
1645
+ - type: ndcg_at_100
1646
+ value: 63.731
1647
+ - type: ndcg_at_1000
1648
+ value: 64.41799999999999
1649
+ - type: ndcg_at_3
1650
+ value: 53.230999999999995
1651
+ - type: ndcg_at_5
1652
+ value: 57.26
1653
+ - type: precision_at_1
1654
+ value: 42.468
1655
+ - type: precision_at_10
1656
+ value: 9.47
1657
+ - type: precision_at_100
1658
+ value: 1.1360000000000001
1659
+ - type: precision_at_1000
1660
+ value: 0.12
1661
+ - type: precision_at_3
1662
+ value: 23.724999999999998
1663
+ - type: precision_at_5
1664
+ value: 16.593
1665
+ - type: recall_at_1
1666
+ value: 37.828
1667
+ - type: recall_at_10
1668
+ value: 79.538
1669
+ - type: recall_at_100
1670
+ value: 93.646
1671
+ - type: recall_at_1000
1672
+ value: 98.72999999999999
1673
+ - type: recall_at_3
1674
+ value: 61.134
1675
+ - type: recall_at_5
1676
+ value: 70.377
1677
+ - task:
1678
+ type: Retrieval
1679
+ dataset:
1680
+ name: MTEB QuoraRetrieval
1681
+ type: quora
1682
+ config: default
1683
+ split: test
1684
+ revision: None
1685
+ metrics:
1686
+ - type: map_at_1
1687
+ value: 70.548
1688
+ - type: map_at_10
1689
+ value: 84.466
1690
+ - type: map_at_100
1691
+ value: 85.10600000000001
1692
+ - type: map_at_1000
1693
+ value: 85.123
1694
+ - type: map_at_3
1695
+ value: 81.57600000000001
1696
+ - type: map_at_5
1697
+ value: 83.399
1698
+ - type: mrr_at_1
1699
+ value: 81.24
1700
+ - type: mrr_at_10
1701
+ value: 87.457
1702
+ - type: mrr_at_100
1703
+ value: 87.574
1704
+ - type: mrr_at_1000
1705
+ value: 87.575
1706
+ - type: mrr_at_3
1707
+ value: 86.507
1708
+ - type: mrr_at_5
1709
+ value: 87.205
1710
+ - type: ndcg_at_1
1711
+ value: 81.25
1712
+ - type: ndcg_at_10
1713
+ value: 88.203
1714
+ - type: ndcg_at_100
1715
+ value: 89.457
1716
+ - type: ndcg_at_1000
1717
+ value: 89.563
1718
+ - type: ndcg_at_3
1719
+ value: 85.465
1720
+ - type: ndcg_at_5
1721
+ value: 87.007
1722
+ - type: precision_at_1
1723
+ value: 81.25
1724
+ - type: precision_at_10
1725
+ value: 13.373
1726
+ - type: precision_at_100
1727
+ value: 1.5270000000000001
1728
+ - type: precision_at_1000
1729
+ value: 0.157
1730
+ - type: precision_at_3
1731
+ value: 37.417
1732
+ - type: precision_at_5
1733
+ value: 24.556
1734
+ - type: recall_at_1
1735
+ value: 70.548
1736
+ - type: recall_at_10
1737
+ value: 95.208
1738
+ - type: recall_at_100
1739
+ value: 99.514
1740
+ - type: recall_at_1000
1741
+ value: 99.988
1742
+ - type: recall_at_3
1743
+ value: 87.214
1744
+ - type: recall_at_5
1745
+ value: 91.696
1746
+ - task:
1747
+ type: Clustering
1748
+ dataset:
1749
+ name: MTEB RedditClustering
1750
+ type: mteb/reddit-clustering
1751
+ config: default
1752
+ split: test
1753
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1754
+ metrics:
1755
+ - type: v_measure
1756
+ value: 53.04822095496839
1757
+ - task:
1758
+ type: Clustering
1759
+ dataset:
1760
+ name: MTEB RedditClusteringP2P
1761
+ type: mteb/reddit-clustering-p2p
1762
+ config: default
1763
+ split: test
1764
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1765
+ metrics:
1766
+ - type: v_measure
1767
+ value: 60.30778476474675
1768
+ - task:
1769
+ type: Retrieval
1770
+ dataset:
1771
+ name: MTEB SCIDOCS
1772
+ type: scidocs
1773
+ config: default
1774
+ split: test
1775
+ revision: None
1776
+ metrics:
1777
+ - type: map_at_1
1778
+ value: 4.692
1779
+ - type: map_at_10
1780
+ value: 11.766
1781
+ - type: map_at_100
1782
+ value: 13.904
1783
+ - type: map_at_1000
1784
+ value: 14.216999999999999
1785
+ - type: map_at_3
1786
+ value: 8.245
1787
+ - type: map_at_5
1788
+ value: 9.92
1789
+ - type: mrr_at_1
1790
+ value: 23.0
1791
+ - type: mrr_at_10
1792
+ value: 33.78
1793
+ - type: mrr_at_100
1794
+ value: 34.922
1795
+ - type: mrr_at_1000
1796
+ value: 34.973
1797
+ - type: mrr_at_3
1798
+ value: 30.2
1799
+ - type: mrr_at_5
1800
+ value: 32.565
1801
+ - type: ndcg_at_1
1802
+ value: 23.0
1803
+ - type: ndcg_at_10
1804
+ value: 19.863
1805
+ - type: ndcg_at_100
1806
+ value: 28.141
1807
+ - type: ndcg_at_1000
1808
+ value: 33.549
1809
+ - type: ndcg_at_3
1810
+ value: 18.434
1811
+ - type: ndcg_at_5
1812
+ value: 16.384
1813
+ - type: precision_at_1
1814
+ value: 23.0
1815
+ - type: precision_at_10
1816
+ value: 10.39
1817
+ - type: precision_at_100
1818
+ value: 2.235
1819
+ - type: precision_at_1000
1820
+ value: 0.35300000000000004
1821
+ - type: precision_at_3
1822
+ value: 17.133000000000003
1823
+ - type: precision_at_5
1824
+ value: 14.44
1825
+ - type: recall_at_1
1826
+ value: 4.692
1827
+ - type: recall_at_10
1828
+ value: 21.025
1829
+ - type: recall_at_100
1830
+ value: 45.324999999999996
1831
+ - type: recall_at_1000
1832
+ value: 71.675
1833
+ - type: recall_at_3
1834
+ value: 10.440000000000001
1835
+ - type: recall_at_5
1836
+ value: 14.64
1837
+ - task:
1838
+ type: STS
1839
+ dataset:
1840
+ name: MTEB SICK-R
1841
+ type: mteb/sickr-sts
1842
+ config: default
1843
+ split: test
1844
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1845
+ metrics:
1846
+ - type: cos_sim_pearson
1847
+ value: 84.96178184892842
1848
+ - type: cos_sim_spearman
1849
+ value: 79.6487740813199
1850
+ - type: euclidean_pearson
1851
+ value: 82.06661161625023
1852
+ - type: euclidean_spearman
1853
+ value: 79.64876769031183
1854
+ - type: manhattan_pearson
1855
+ value: 82.07061164575131
1856
+ - type: manhattan_spearman
1857
+ value: 79.65197039464537
1858
+ - task:
1859
+ type: STS
1860
+ dataset:
1861
+ name: MTEB STS12
1862
+ type: mteb/sts12-sts
1863
+ config: default
1864
+ split: test
1865
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1866
+ metrics:
1867
+ - type: cos_sim_pearson
1868
+ value: 84.15305604100027
1869
+ - type: cos_sim_spearman
1870
+ value: 74.27447427941591
1871
+ - type: euclidean_pearson
1872
+ value: 80.52737337565307
1873
+ - type: euclidean_spearman
1874
+ value: 74.27416077132192
1875
+ - type: manhattan_pearson
1876
+ value: 80.53728571140387
1877
+ - type: manhattan_spearman
1878
+ value: 74.28853605753457
1879
+ - task:
1880
+ type: STS
1881
+ dataset:
1882
+ name: MTEB STS13
1883
+ type: mteb/sts13-sts
1884
+ config: default
1885
+ split: test
1886
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1887
+ metrics:
1888
+ - type: cos_sim_pearson
1889
+ value: 83.44386080639279
1890
+ - type: cos_sim_spearman
1891
+ value: 84.17947648159536
1892
+ - type: euclidean_pearson
1893
+ value: 83.34145388129387
1894
+ - type: euclidean_spearman
1895
+ value: 84.17947648159536
1896
+ - type: manhattan_pearson
1897
+ value: 83.30699061927966
1898
+ - type: manhattan_spearman
1899
+ value: 84.18125737380451
1900
+ - task:
1901
+ type: STS
1902
+ dataset:
1903
+ name: MTEB STS14
1904
+ type: mteb/sts14-sts
1905
+ config: default
1906
+ split: test
1907
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1908
+ metrics:
1909
+ - type: cos_sim_pearson
1910
+ value: 81.57392220985612
1911
+ - type: cos_sim_spearman
1912
+ value: 78.80745014464101
1913
+ - type: euclidean_pearson
1914
+ value: 80.01660371487199
1915
+ - type: euclidean_spearman
1916
+ value: 78.80741240102256
1917
+ - type: manhattan_pearson
1918
+ value: 79.96810779507953
1919
+ - type: manhattan_spearman
1920
+ value: 78.75600400119448
1921
+ - task:
1922
+ type: STS
1923
+ dataset:
1924
+ name: MTEB STS15
1925
+ type: mteb/sts15-sts
1926
+ config: default
1927
+ split: test
1928
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1929
+ metrics:
1930
+ - type: cos_sim_pearson
1931
+ value: 86.85421063026625
1932
+ - type: cos_sim_spearman
1933
+ value: 87.55320285299192
1934
+ - type: euclidean_pearson
1935
+ value: 86.69750143323517
1936
+ - type: euclidean_spearman
1937
+ value: 87.55320284326378
1938
+ - type: manhattan_pearson
1939
+ value: 86.63379169960379
1940
+ - type: manhattan_spearman
1941
+ value: 87.4815029877984
1942
+ - task:
1943
+ type: STS
1944
+ dataset:
1945
+ name: MTEB STS16
1946
+ type: mteb/sts16-sts
1947
+ config: default
1948
+ split: test
1949
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1950
+ metrics:
1951
+ - type: cos_sim_pearson
1952
+ value: 84.31314130411842
1953
+ - type: cos_sim_spearman
1954
+ value: 85.3489588181433
1955
+ - type: euclidean_pearson
1956
+ value: 84.13240933463535
1957
+ - type: euclidean_spearman
1958
+ value: 85.34902871403281
1959
+ - type: manhattan_pearson
1960
+ value: 84.01183086503559
1961
+ - type: manhattan_spearman
1962
+ value: 85.19316703166102
1963
+ - task:
1964
+ type: STS
1965
+ dataset:
1966
+ name: MTEB STS17 (en-en)
1967
+ type: mteb/sts17-crosslingual-sts
1968
+ config: en-en
1969
+ split: test
1970
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1971
+ metrics:
1972
+ - type: cos_sim_pearson
1973
+ value: 89.09979781689536
1974
+ - type: cos_sim_spearman
1975
+ value: 88.87813323759015
1976
+ - type: euclidean_pearson
1977
+ value: 88.65413031123792
1978
+ - type: euclidean_spearman
1979
+ value: 88.87813323759015
1980
+ - type: manhattan_pearson
1981
+ value: 88.61818758256024
1982
+ - type: manhattan_spearman
1983
+ value: 88.81044100494604
1984
+ - task:
1985
+ type: STS
1986
+ dataset:
1987
+ name: MTEB STS22 (en)
1988
+ type: mteb/sts22-crosslingual-sts
1989
+ config: en
1990
+ split: test
1991
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1992
+ metrics:
1993
+ - type: cos_sim_pearson
1994
+ value: 62.30693258111531
1995
+ - type: cos_sim_spearman
1996
+ value: 62.195516523251946
1997
+ - type: euclidean_pearson
1998
+ value: 62.951283701049476
1999
+ - type: euclidean_spearman
2000
+ value: 62.195516523251946
2001
+ - type: manhattan_pearson
2002
+ value: 63.068322281439535
2003
+ - type: manhattan_spearman
2004
+ value: 62.10621171028406
2005
+ - task:
2006
+ type: STS
2007
+ dataset:
2008
+ name: MTEB STSBenchmark
2009
+ type: mteb/stsbenchmark-sts
2010
+ config: default
2011
+ split: test
2012
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2013
+ metrics:
2014
+ - type: cos_sim_pearson
2015
+ value: 84.27092833763909
2016
+ - type: cos_sim_spearman
2017
+ value: 84.84429717949759
2018
+ - type: euclidean_pearson
2019
+ value: 84.8516966060792
2020
+ - type: euclidean_spearman
2021
+ value: 84.84429717949759
2022
+ - type: manhattan_pearson
2023
+ value: 84.82203139242881
2024
+ - type: manhattan_spearman
2025
+ value: 84.8358503952945
2026
+ - task:
2027
+ type: Reranking
2028
+ dataset:
2029
+ name: MTEB SciDocsRR
2030
+ type: mteb/scidocs-reranking
2031
+ config: default
2032
+ split: test
2033
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2034
+ metrics:
2035
+ - type: map
2036
+ value: 83.10290863981409
2037
+ - type: mrr
2038
+ value: 95.31168450286097
2039
+ - task:
2040
+ type: Retrieval
2041
+ dataset:
2042
+ name: MTEB SciFact
2043
+ type: scifact
2044
+ config: default
2045
+ split: test
2046
+ revision: None
2047
+ metrics:
2048
+ - type: map_at_1
2049
+ value: 52.161
2050
+ - type: map_at_10
2051
+ value: 62.138000000000005
2052
+ - type: map_at_100
2053
+ value: 62.769
2054
+ - type: map_at_1000
2055
+ value: 62.812
2056
+ - type: map_at_3
2057
+ value: 59.111000000000004
2058
+ - type: map_at_5
2059
+ value: 60.995999999999995
2060
+ - type: mrr_at_1
2061
+ value: 55.333
2062
+ - type: mrr_at_10
2063
+ value: 63.504000000000005
2064
+ - type: mrr_at_100
2065
+ value: 64.036
2066
+ - type: mrr_at_1000
2067
+ value: 64.08
2068
+ - type: mrr_at_3
2069
+ value: 61.278
2070
+ - type: mrr_at_5
2071
+ value: 62.778
2072
+ - type: ndcg_at_1
2073
+ value: 55.333
2074
+ - type: ndcg_at_10
2075
+ value: 66.678
2076
+ - type: ndcg_at_100
2077
+ value: 69.415
2078
+ - type: ndcg_at_1000
2079
+ value: 70.453
2080
+ - type: ndcg_at_3
2081
+ value: 61.755
2082
+ - type: ndcg_at_5
2083
+ value: 64.546
2084
+ - type: precision_at_1
2085
+ value: 55.333
2086
+ - type: precision_at_10
2087
+ value: 9.033
2088
+ - type: precision_at_100
2089
+ value: 1.043
2090
+ - type: precision_at_1000
2091
+ value: 0.11199999999999999
2092
+ - type: precision_at_3
2093
+ value: 24.221999999999998
2094
+ - type: precision_at_5
2095
+ value: 16.333000000000002
2096
+ - type: recall_at_1
2097
+ value: 52.161
2098
+ - type: recall_at_10
2099
+ value: 79.156
2100
+ - type: recall_at_100
2101
+ value: 91.333
2102
+ - type: recall_at_1000
2103
+ value: 99.333
2104
+ - type: recall_at_3
2105
+ value: 66.43299999999999
2106
+ - type: recall_at_5
2107
+ value: 73.272
2108
+ - task:
2109
+ type: PairClassification
2110
+ dataset:
2111
+ name: MTEB SprintDuplicateQuestions
2112
+ type: mteb/sprintduplicatequestions-pairclassification
2113
+ config: default
2114
+ split: test
2115
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2116
+ metrics:
2117
+ - type: cos_sim_accuracy
2118
+ value: 99.81287128712871
2119
+ - type: cos_sim_ap
2120
+ value: 95.30034785910676
2121
+ - type: cos_sim_f1
2122
+ value: 90.28629856850716
2123
+ - type: cos_sim_precision
2124
+ value: 92.36401673640168
2125
+ - type: cos_sim_recall
2126
+ value: 88.3
2127
+ - type: dot_accuracy
2128
+ value: 99.81287128712871
2129
+ - type: dot_ap
2130
+ value: 95.30034785910676
2131
+ - type: dot_f1
2132
+ value: 90.28629856850716
2133
+ - type: dot_precision
2134
+ value: 92.36401673640168
2135
+ - type: dot_recall
2136
+ value: 88.3
2137
+ - type: euclidean_accuracy
2138
+ value: 99.81287128712871
2139
+ - type: euclidean_ap
2140
+ value: 95.30034785910676
2141
+ - type: euclidean_f1
2142
+ value: 90.28629856850716
2143
+ - type: euclidean_precision
2144
+ value: 92.36401673640168
2145
+ - type: euclidean_recall
2146
+ value: 88.3
2147
+ - type: manhattan_accuracy
2148
+ value: 99.80990099009901
2149
+ - type: manhattan_ap
2150
+ value: 95.26880751950654
2151
+ - type: manhattan_f1
2152
+ value: 90.22177419354838
2153
+ - type: manhattan_precision
2154
+ value: 90.95528455284553
2155
+ - type: manhattan_recall
2156
+ value: 89.5
2157
+ - type: max_accuracy
2158
+ value: 99.81287128712871
2159
+ - type: max_ap
2160
+ value: 95.30034785910676
2161
+ - type: max_f1
2162
+ value: 90.28629856850716
2163
+ - task:
2164
+ type: Clustering
2165
+ dataset:
2166
+ name: MTEB StackExchangeClustering
2167
+ type: mteb/stackexchange-clustering
2168
+ config: default
2169
+ split: test
2170
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2171
+ metrics:
2172
+ - type: v_measure
2173
+ value: 58.518662504351184
2174
+ - task:
2175
+ type: Clustering
2176
+ dataset:
2177
+ name: MTEB StackExchangeClusteringP2P
2178
+ type: mteb/stackexchange-clustering-p2p
2179
+ config: default
2180
+ split: test
2181
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2182
+ metrics:
2183
+ - type: v_measure
2184
+ value: 34.96168178378587
2185
+ - task:
2186
+ type: Reranking
2187
+ dataset:
2188
+ name: MTEB StackOverflowDupQuestions
2189
+ type: mteb/stackoverflowdupquestions-reranking
2190
+ config: default
2191
+ split: test
2192
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2193
+ metrics:
2194
+ - type: map
2195
+ value: 52.04862593471896
2196
+ - type: mrr
2197
+ value: 52.97238402936932
2198
+ - task:
2199
+ type: Summarization
2200
+ dataset:
2201
+ name: MTEB SummEval
2202
+ type: mteb/summeval
2203
+ config: default
2204
+ split: test
2205
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2206
+ metrics:
2207
+ - type: cos_sim_pearson
2208
+ value: 30.092545236479946
2209
+ - type: cos_sim_spearman
2210
+ value: 31.599851000175498
2211
+ - type: dot_pearson
2212
+ value: 30.092542723901676
2213
+ - type: dot_spearman
2214
+ value: 31.599851000175498
2215
+ - task:
2216
+ type: Retrieval
2217
+ dataset:
2218
+ name: MTEB TRECCOVID
2219
+ type: trec-covid
2220
+ config: default
2221
+ split: test
2222
+ revision: None
2223
+ metrics:
2224
+ - type: map_at_1
2225
+ value: 0.189
2226
+ - type: map_at_10
2227
+ value: 1.662
2228
+ - type: map_at_100
2229
+ value: 9.384
2230
+ - type: map_at_1000
2231
+ value: 22.669
2232
+ - type: map_at_3
2233
+ value: 0.5559999999999999
2234
+ - type: map_at_5
2235
+ value: 0.9039999999999999
2236
+ - type: mrr_at_1
2237
+ value: 68.0
2238
+ - type: mrr_at_10
2239
+ value: 81.01899999999999
2240
+ - type: mrr_at_100
2241
+ value: 81.01899999999999
2242
+ - type: mrr_at_1000
2243
+ value: 81.01899999999999
2244
+ - type: mrr_at_3
2245
+ value: 79.333
2246
+ - type: mrr_at_5
2247
+ value: 80.733
2248
+ - type: ndcg_at_1
2249
+ value: 63.0
2250
+ - type: ndcg_at_10
2251
+ value: 65.913
2252
+ - type: ndcg_at_100
2253
+ value: 51.895
2254
+ - type: ndcg_at_1000
2255
+ value: 46.967
2256
+ - type: ndcg_at_3
2257
+ value: 65.49199999999999
2258
+ - type: ndcg_at_5
2259
+ value: 66.69699999999999
2260
+ - type: precision_at_1
2261
+ value: 68.0
2262
+ - type: precision_at_10
2263
+ value: 71.6
2264
+ - type: precision_at_100
2265
+ value: 53.66
2266
+ - type: precision_at_1000
2267
+ value: 21.124000000000002
2268
+ - type: precision_at_3
2269
+ value: 72.667
2270
+ - type: precision_at_5
2271
+ value: 74.0
2272
+ - type: recall_at_1
2273
+ value: 0.189
2274
+ - type: recall_at_10
2275
+ value: 1.913
2276
+ - type: recall_at_100
2277
+ value: 12.601999999999999
2278
+ - type: recall_at_1000
2279
+ value: 44.296
2280
+ - type: recall_at_3
2281
+ value: 0.605
2282
+ - type: recall_at_5
2283
+ value: 1.018
2284
+ - task:
2285
+ type: Retrieval
2286
+ dataset:
2287
+ name: MTEB Touche2020
2288
+ type: webis-touche2020
2289
+ config: default
2290
+ split: test
2291
+ revision: None
2292
+ metrics:
2293
+ - type: map_at_1
2294
+ value: 2.701
2295
+ - type: map_at_10
2296
+ value: 10.445
2297
+ - type: map_at_100
2298
+ value: 17.324
2299
+ - type: map_at_1000
2300
+ value: 19.161
2301
+ - type: map_at_3
2302
+ value: 5.497
2303
+ - type: map_at_5
2304
+ value: 7.278
2305
+ - type: mrr_at_1
2306
+ value: 30.612000000000002
2307
+ - type: mrr_at_10
2308
+ value: 45.534
2309
+ - type: mrr_at_100
2310
+ value: 45.792
2311
+ - type: mrr_at_1000
2312
+ value: 45.806999999999995
2313
+ - type: mrr_at_3
2314
+ value: 37.755
2315
+ - type: mrr_at_5
2316
+ value: 43.469
2317
+ - type: ndcg_at_1
2318
+ value: 26.531
2319
+ - type: ndcg_at_10
2320
+ value: 26.235000000000003
2321
+ - type: ndcg_at_100
2322
+ value: 39.17
2323
+ - type: ndcg_at_1000
2324
+ value: 51.038
2325
+ - type: ndcg_at_3
2326
+ value: 23.625
2327
+ - type: ndcg_at_5
2328
+ value: 24.338
2329
+ - type: precision_at_1
2330
+ value: 30.612000000000002
2331
+ - type: precision_at_10
2332
+ value: 24.285999999999998
2333
+ - type: precision_at_100
2334
+ value: 8.224
2335
+ - type: precision_at_1000
2336
+ value: 1.6179999999999999
2337
+ - type: precision_at_3
2338
+ value: 24.490000000000002
2339
+ - type: precision_at_5
2340
+ value: 24.898
2341
+ - type: recall_at_1
2342
+ value: 2.701
2343
+ - type: recall_at_10
2344
+ value: 17.997
2345
+ - type: recall_at_100
2346
+ value: 51.766999999999996
2347
+ - type: recall_at_1000
2348
+ value: 87.863
2349
+ - type: recall_at_3
2350
+ value: 6.295000000000001
2351
+ - type: recall_at_5
2352
+ value: 9.993
2353
+ - task:
2354
+ type: Classification
2355
+ dataset:
2356
+ name: MTEB ToxicConversationsClassification
2357
+ type: mteb/toxic_conversations_50k
2358
+ config: default
2359
+ split: test
2360
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2361
+ metrics:
2362
+ - type: accuracy
2363
+ value: 73.3474
2364
+ - type: ap
2365
+ value: 15.393431414459924
2366
+ - type: f1
2367
+ value: 56.466681887882416
2368
+ - task:
2369
+ type: Classification
2370
+ dataset:
2371
+ name: MTEB TweetSentimentExtractionClassification
2372
+ type: mteb/tweet_sentiment_extraction
2373
+ config: default
2374
+ split: test
2375
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2376
+ metrics:
2377
+ - type: accuracy
2378
+ value: 62.062818336163
2379
+ - type: f1
2380
+ value: 62.11230840463252
2381
+ - task:
2382
+ type: Clustering
2383
+ dataset:
2384
+ name: MTEB TwentyNewsgroupsClustering
2385
+ type: mteb/twentynewsgroups-clustering
2386
+ config: default
2387
+ split: test
2388
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2389
+ metrics:
2390
+ - type: v_measure
2391
+ value: 42.464892820845115
2392
+ - task:
2393
+ type: PairClassification
2394
+ dataset:
2395
+ name: MTEB TwitterSemEval2015
2396
+ type: mteb/twittersemeval2015-pairclassification
2397
+ config: default
2398
+ split: test
2399
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2400
+ metrics:
2401
+ - type: cos_sim_accuracy
2402
+ value: 86.15962329379508
2403
+ - type: cos_sim_ap
2404
+ value: 74.73674057919256
2405
+ - type: cos_sim_f1
2406
+ value: 68.81245642574947
2407
+ - type: cos_sim_precision
2408
+ value: 61.48255813953488
2409
+ - type: cos_sim_recall
2410
+ value: 78.12664907651715
2411
+ - type: dot_accuracy
2412
+ value: 86.15962329379508
2413
+ - type: dot_ap
2414
+ value: 74.7367634988281
2415
+ - type: dot_f1
2416
+ value: 68.81245642574947
2417
+ - type: dot_precision
2418
+ value: 61.48255813953488
2419
+ - type: dot_recall
2420
+ value: 78.12664907651715
2421
+ - type: euclidean_accuracy
2422
+ value: 86.15962329379508
2423
+ - type: euclidean_ap
2424
+ value: 74.7367761466634
2425
+ - type: euclidean_f1
2426
+ value: 68.81245642574947
2427
+ - type: euclidean_precision
2428
+ value: 61.48255813953488
2429
+ - type: euclidean_recall
2430
+ value: 78.12664907651715
2431
+ - type: manhattan_accuracy
2432
+ value: 86.21326816474935
2433
+ - type: manhattan_ap
2434
+ value: 74.64416473733951
2435
+ - type: manhattan_f1
2436
+ value: 68.80924855491331
2437
+ - type: manhattan_precision
2438
+ value: 61.23456790123457
2439
+ - type: manhattan_recall
2440
+ value: 78.52242744063325
2441
+ - type: max_accuracy
2442
+ value: 86.21326816474935
2443
+ - type: max_ap
2444
+ value: 74.7367761466634
2445
+ - type: max_f1
2446
+ value: 68.81245642574947
2447
+ - task:
2448
+ type: PairClassification
2449
+ dataset:
2450
+ name: MTEB TwitterURLCorpus
2451
+ type: mteb/twitterurlcorpus-pairclassification
2452
+ config: default
2453
+ split: test
2454
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2455
+ metrics:
2456
+ - type: cos_sim_accuracy
2457
+ value: 88.97620988085536
2458
+ - type: cos_sim_ap
2459
+ value: 86.08680845745758
2460
+ - type: cos_sim_f1
2461
+ value: 78.02793637114438
2462
+ - type: cos_sim_precision
2463
+ value: 73.11082699683736
2464
+ - type: cos_sim_recall
2465
+ value: 83.65414228518632
2466
+ - type: dot_accuracy
2467
+ value: 88.97620988085536
2468
+ - type: dot_ap
2469
+ value: 86.08681149437946
2470
+ - type: dot_f1
2471
+ value: 78.02793637114438
2472
+ - type: dot_precision
2473
+ value: 73.11082699683736
2474
+ - type: dot_recall
2475
+ value: 83.65414228518632
2476
+ - type: euclidean_accuracy
2477
+ value: 88.97620988085536
2478
+ - type: euclidean_ap
2479
+ value: 86.08681215460771
2480
+ - type: euclidean_f1
2481
+ value: 78.02793637114438
2482
+ - type: euclidean_precision
2483
+ value: 73.11082699683736
2484
+ - type: euclidean_recall
2485
+ value: 83.65414228518632
2486
+ - type: manhattan_accuracy
2487
+ value: 88.88888888888889
2488
+ - type: manhattan_ap
2489
+ value: 86.02916327562438
2490
+ - type: manhattan_f1
2491
+ value: 78.02063045516843
2492
+ - type: manhattan_precision
2493
+ value: 73.38851947346994
2494
+ - type: manhattan_recall
2495
+ value: 83.2768709578072
2496
+ - type: max_accuracy
2497
+ value: 88.97620988085536
2498
+ - type: max_ap
2499
+ value: 86.08681215460771
2500
+ - type: max_f1
2501
+ value: 78.02793637114438
2502
+ ---
2503
+
2504
+ # walsons/jina-embeddings-v2-base-en-Q4_K_M-GGUF
2505
+ This model was converted to GGUF format from [`jinaai/jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2506
+ Refer to the [original model card](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) for more details on the model.
2507
+
2508
+ ## Use with llama.cpp
2509
+ Install llama.cpp through brew (works on Mac and Linux)
2510
+
2511
+ ```bash
2512
+ brew install llama.cpp
2513
+
2514
+ ```
2515
+ Invoke the llama.cpp server or the CLI.
2516
+
2517
+ ### CLI:
2518
+ ```bash
2519
+ llama-cli --hf-repo walsons/jina-embeddings-v2-base-en-Q4_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q4_k_m.gguf -p "The meaning to life and the universe is"
2520
+ ```
2521
+
2522
+ ### Server:
2523
+ ```bash
2524
+ llama-server --hf-repo walsons/jina-embeddings-v2-base-en-Q4_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q4_k_m.gguf -c 2048
2525
+ ```
2526
+
2527
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2528
+
2529
+ Step 1: Clone llama.cpp from GitHub.
2530
+ ```
2531
+ git clone https://github.com/ggerganov/llama.cpp
2532
+ ```
2533
+
2534
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2535
+ ```
2536
+ cd llama.cpp && LLAMA_CURL=1 make
2537
+ ```
2538
+
2539
+ Step 3: Run inference through the main binary.
2540
+ ```
2541
+ ./llama-cli --hf-repo walsons/jina-embeddings-v2-base-en-Q4_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q4_k_m.gguf -p "The meaning to life and the universe is"
2542
+ ```
2543
+ or
2544
+ ```
2545
+ ./llama-server --hf-repo walsons/jina-embeddings-v2-base-en-Q4_K_M-GGUF --hf-file jina-embeddings-v2-base-en-q4_k_m.gguf -c 2048
2546
+ ```