File size: 14,941 Bytes
b3ac905 661ec62 b3ac905 661ec62 6f5f2b9 661ec62 58ca939 661ec62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
---
language:
- pt
license: apache-2.0
library_name: transformers
datasets:
- wikimedia/wikipedia
metrics:
- accuracy
model-index:
- name: periquito-3B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 17.98
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 21.14
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 22.69
name: accuracy
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.01
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 8.92
name: pearson
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 43.97
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 50.46
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 41.19
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia-temp/tweetsentbr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 47.96
name: f1-macro
source:
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=wandgibaut/periquito-3B
name: Open Portuguese LLM Leaderboard
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
Periquito-3B is a large language model (LLM) trained by Wandgibaut. It is built upon the OpenLlama-3B architecture and specifically fine-tuned using Portuguese Wikipedia (pt-br) data. This specialization makes it particularly adept at understanding and generating text in Brazilian Portuguese.
- **Developed by:** Wandemberg Gibaut
- **Model type:** Llama
- **Language(s) (NLP):** Portuguese
- **License:** Apache License 2.0
- **Finetuned from model [optional]:** openlm-research/open_llama_3b
### Loading the Weights with Hugging Face Transformers
```python
import torch
from transformers import LlamaTokenizer, LlamaForCausalLM
model_path = 'wandgibaut/periquito-3B'
tokenizer = LlamaTokenizer.from_pretrained(model_path)
model = LlamaForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float16, device_map='auto',
)
prompt = 'Q: Qual o maior animal terrestre?\nA:'
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=32
)
print(tokenizer.decode(generation_output[0]))
```
For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co/docs/transformers/main/model_doc/llama).
### Evaluating with LM-Eval-Harness
The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, we used a custom version, that has some translated tasks and the ENEM suit. This can be found in [wandgibaut/lm-evaluation-harness-PTBR](https://github.com/wandgibaut/lm-evaluation-harness-PTBR).
## Dataset and Training
We finetunned the model on Wikipedia-pt dataset with LoRA, in Google's TPU-v3 in the [Google's TPU Research program](https://sites.research.google/trc/about/).
## Evaluation
We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/).
hf-causal (pretrained=wandgibaut/periquito-3B), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
| Task |Version| Metric | Value | |Stderr|
|---------|------:|------------|------:|---|-----:|
|agnews_pt| 0|acc | 0.6184|± |0.0056|
|boolq_pt | 1|acc | 0.6333|± |0.0084|
|faquad | 1|exact | 7.9365| | |
| | |f1 |45.6971| | |
| | |HasAns_exact| 7.9365| | |
| | |HasAns_f1 |45.6971| | |
| | |NoAns_exact | 0.0000| | |
| | |NoAns_f1 | 0.0000| | |
| | |best_exact | 7.9365| | |
| | |best_f1 |45.6971| | |
|imdb_pt | 0|acc | 0.6338|± |0.0068|
|sst2_pt | 1|acc | 0.6823|± |0.0158|
|toldbr | 0|acc | 0.4629|± |0.0109|
| | |f1_macro | 0.3164| | |
hf-causal (pretrained=wandgibaut/periquito-3B,dtype=float), limit: None, provide_description: False, num_fewshot: 3, batch_size: None
| Task |Version| Metric | Value | |Stderr|
|---------|------:|------------|------:|---|-----:|
|agnews_pt| 0|acc | 0.6242|± |0.0056|
|boolq_pt | 1|acc | 0.6477|± |0.0084|
|faquad | 1|exact |34.9206| | |
| | |f1 |70.3968| | |
| | |HasAns_exact|34.9206| | |
| | |HasAns_f1 |70.3968| | |
| | |NoAns_exact | 0.0000| | |
| | |NoAns_f1 | 0.0000| | |
| | |best_exact |34.9206| | |
| | |best_f1 |70.3968| | |
|imdb_pt | 0|acc | 0.8408|± |0.0052|
|sst2_pt | 1|acc | 0.7775|± |0.0141|
|toldbr | 0|acc | 0.5143|± |0.0109|
| | |f1_macro | 0.5127| | |
hf-causal (pretrained=wandgibaut/periquito-3B), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|----------------|-----:|---|-----:|
|enem | 0|acc |0.1976|± |0.0132|
| | |2009 |0.2022|± |0.0428|
| | |2016 |0.1809|± |0.0399|
| | |2015 |0.1348|± |0.0364|
| | |2016_2_ |0.2366|± |0.0443|
| | |2017 |0.2022|± |0.0428|
| | |2013 |0.1647|± |0.0405|
| | |2012 |0.2174|± |0.0432|
| | |2011 |0.2292|± |0.0431|
| | |2010 |0.2157|± |0.0409|
| | |2014 |0.1839|± |0.0418|
|enem_2022 | 0|acc |0.2373|± |0.0393|
| | |2022 |0.2373|± |0.0393|
| | |human-sciences |0.2703|± |0.0740|
| | |mathematics |0.1818|± |0.0842|
| | |natural-sciences|0.1538|± |0.0722|
| | |languages |0.3030|± |0.0812|
|enem_CoT | 0|acc |0.1812|± |0.0127|
| | |2009 |0.1348|± |0.0364|
| | |2016 |0.1596|± |0.0380|
| | |2015 |0.1124|± |0.0337|
| | |2016_2_ |0.1290|± |0.0350|
| | |2017 |0.2247|± |0.0445|
| | |2013 |0.1765|± |0.0416|
| | |2012 |0.2391|± |0.0447|
| | |2011 |0.1979|± |0.0409|
| | |2010 |0.2451|± |0.0428|
| | |2014 |0.1839|± |0.0418|
|enem_CoT_2022| 0|acc |0.2119|± |0.0378|
| | |2022 |0.2119|± |0.0378|
| | |human-sciences |0.2703|± |0.0740|
| | |mathematics |0.1818|± |0.0842|
| | |natural-sciences|0.2308|± |0.0843|
| | |languages |0.1515|± |0.0634|
hf-causal (pretrained=wandgibaut/periquito-3B,dtype=float), limit: None, provide_description: False, num_fewshot: 1, batch_size: None
| Task |Version| Metric |Value | |Stderr|
|-------------|------:|----------------|-----:|---|-----:|
|enem | 0|acc |0.1790|± |0.0127|
| | |2009 |0.1573|± |0.0388|
| | |2016 |0.2021|± |0.0416|
| | |2015 |0.1573|± |0.0388|
| | |2016_2_ |0.1935|± |0.0412|
| | |2017 |0.2247|± |0.0445|
| | |2013 |0.1412|± |0.0380|
| | |2012 |0.1739|± |0.0397|
| | |2011 |0.1979|± |0.0409|
| | |2010 |0.1961|± |0.0395|
| | |2014 |0.1379|± |0.0372|
|enem_2022 | 0|acc |0.1864|± |0.0360|
| | |2022 |0.1864|± |0.0360|
| | |human-sciences |0.2432|± |0.0715|
| | |mathematics |0.1364|± |0.0749|
| | |natural-sciences|0.1154|± |0.0639|
| | |languages |0.2121|± |0.0723|
|enem_CoT | 0|acc |0.2009|± |0.0132|
| | |2009 |0.2135|± |0.0437|
| | |2016 |0.2340|± |0.0439|
| | |2015 |0.1348|± |0.0364|
| | |2016_2_ |0.2258|± |0.0436|
| | |2017 |0.2360|± |0.0453|
| | |2013 |0.1529|± |0.0393|
| | |2012 |0.1957|± |0.0416|
| | |2011 |0.2500|± |0.0444|
| | |2010 |0.1667|± |0.0371|
| | |2014 |0.1954|± |0.0428|
|enem_CoT_2022| 0|acc |0.2542|± |0.0403|
| | |2022 |0.2542|± |0.0403|
| | |human-sciences |0.2703|± |0.0740|
| | |mathematics |0.2273|± |0.0914|
| | |natural-sciences|0.3846|± |0.0973|
| | |languages |0.1515|± |0.0634|
## Use Cases:
The model is suitable for text generation, language understanding, and various natural language processing tasks in Brazilian Portuguese.
## Limitations:
Like many language models, Periquito-3B might exhibit biases present in its training data. Additionally, its performance is primarily optimized for Portuguese, potentially limiting its effectiveness with other languages.
## Ethical Considerations:
Users are encouraged to use the model ethically, particularly by avoiding the generation of harmful or biased content.
## Acknowledgment
We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources.
## Citation [optional]
If you found periquito-3B useful in your research or applications, please cite using the following BibTeX:
**BibTeX:**
```
@software{wandgibautperiquito3B,
author = {Gibaut, Wandemberg},
title = {Periquito-3B},
month = Sep,
year = 2023,
url = {https://huggingface.co/wandgibaut/periquito-3B}
}
```
# [Open Portuguese LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/eduagarcia-temp/llm_pt_leaderboard_raw_results/tree/main/wandgibaut/periquito-3B)
| Metric | Value |
|--------------------------|---------|
|Average |**33.04**|
|ENEM Challenge (No Images)| 17.98|
|BLUEX (No Images) | 21.14|
|OAB Exams | 22.69|
|Assin2 RTE | 43.01|
|Assin2 STS | 8.92|
|FaQuAD NLI | 43.97|
|HateBR Binary | 50.46|
|PT Hate Speech Binary | 41.19|
|tweetSentBR | 47.96|
|