windsornguyen
commited on
Commit
•
b0544cb
1
Parent(s):
0b8206a
Upload FlashSTU
Browse files- README.md +199 -0
- config.json +27 -0
- config.py +40 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.py +126 -0
- model.safetensors.index.json +136 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"FlashSTU"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "config.FlashSTUConfig",
|
7 |
+
"AutoModel": "model.FlashSTU"
|
8 |
+
},
|
9 |
+
"bias": false,
|
10 |
+
"bsz": 4,
|
11 |
+
"dropout": 0.0,
|
12 |
+
"mlp_scale": 12,
|
13 |
+
"model_type": "FlashSTU",
|
14 |
+
"n_embd": 2304,
|
15 |
+
"n_heads": 9,
|
16 |
+
"n_layers": 7,
|
17 |
+
"num_eigh": 24,
|
18 |
+
"seq_len": 8192,
|
19 |
+
"softcap": 50.0,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.44.0",
|
22 |
+
"use_approx": true,
|
23 |
+
"use_flash_fft": true,
|
24 |
+
"use_hankel_L": false,
|
25 |
+
"vocab_size": 200064,
|
26 |
+
"window_size": 1024
|
27 |
+
}
|
config.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
|
3 |
+
class FlashSTUConfig(PretrainedConfig):
|
4 |
+
model_type = "FlashSTU"
|
5 |
+
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
bsz: int = 4,
|
9 |
+
n_embd: int = 2304,
|
10 |
+
n_heads: int = 9,
|
11 |
+
n_layers: int = 7,
|
12 |
+
seq_len: int = 8192,
|
13 |
+
window_size: int = 1024,
|
14 |
+
vocab_size: int = 200064,
|
15 |
+
mlp_scale: int = 12,
|
16 |
+
bias: bool = False,
|
17 |
+
dropout: float = 0.0,
|
18 |
+
num_eigh: int = 24,
|
19 |
+
use_hankel_L: bool = False,
|
20 |
+
use_flash_fft: bool = True,
|
21 |
+
use_approx: bool = True,
|
22 |
+
softcap: float = 50.0,
|
23 |
+
**kwargs,
|
24 |
+
):
|
25 |
+
super().__init__(**kwargs)
|
26 |
+
self.bsz = bsz
|
27 |
+
self.n_embd = n_embd
|
28 |
+
self.n_heads = n_heads
|
29 |
+
self.n_layers = n_layers
|
30 |
+
self.seq_len = seq_len
|
31 |
+
self.window_size = window_size
|
32 |
+
self.vocab_size = vocab_size
|
33 |
+
self.mlp_scale = mlp_scale
|
34 |
+
self.bias = bias
|
35 |
+
self.dropout = dropout
|
36 |
+
self.num_eigh = num_eigh
|
37 |
+
self.use_hankel_L = use_hankel_L
|
38 |
+
self.use_flash_fft = use_flash_fft
|
39 |
+
self.use_approx = use_approx
|
40 |
+
self.softcap = softcap
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7333db4c5bf7217636fe39e184d8d723061529794c7167953c4b772e8fdb2a3
|
3 |
+
size 4563328000
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc0f3d8a6dfa78b57f6f93b9c473505206f090dc87dcaa072b3b678906030825
|
3 |
+
size 3377400416
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f3ecd382455c5a564824d7b9a5ad1ee430809d73f86c04ee4884188ee330eeca
|
3 |
+
size 1843789952
|
model.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
from transformers import PreTrainedModel
|
6 |
+
|
7 |
+
from stu import STU
|
8 |
+
from modules import Attention
|
9 |
+
from utils import get_spectral_filters, nearest_power_of_two
|
10 |
+
from flash_stu.config import FlashSTUConfig
|
11 |
+
|
12 |
+
try:
|
13 |
+
from flash_attn.modules.mlp import GatedMlp as MLP
|
14 |
+
triton_mlp = True
|
15 |
+
except ImportError as e:
|
16 |
+
print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.")
|
17 |
+
from modules import MLP
|
18 |
+
triton_mlp = False
|
19 |
+
|
20 |
+
try:
|
21 |
+
from flash_attn.ops.triton.layer_norm import RMSNorm
|
22 |
+
except ImportError as e:
|
23 |
+
print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.")
|
24 |
+
from torch.nn import RMSNorm
|
25 |
+
|
26 |
+
try:
|
27 |
+
from flash_attn.losses.cross_entropy import CrossEntropyLoss
|
28 |
+
except ImportError as e:
|
29 |
+
print(f"Unable to import Triton-based cross entropy loss: {e}. Falling back to PyTorch implementation.")
|
30 |
+
from torch.nn import CrossEntropyLoss
|
31 |
+
|
32 |
+
class Block(nn.Module):
|
33 |
+
def __init__(self, config, phi, n) -> None:
|
34 |
+
super(Block, self).__init__()
|
35 |
+
# For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887
|
36 |
+
self.rn_1 = RMSNorm(config.n_embd)
|
37 |
+
self.stu = STU(config, phi, n)
|
38 |
+
self.rn_2 = RMSNorm(config.n_embd)
|
39 |
+
self.attn = Attention(config)
|
40 |
+
self.rn_3 = RMSNorm(config.n_embd)
|
41 |
+
self.mlp = MLP(
|
42 |
+
config.n_embd,
|
43 |
+
config.n_embd * config.mlp_scale,
|
44 |
+
activation=F.silu, # Use SwiGLU
|
45 |
+
bias1=config.bias,
|
46 |
+
bias2=config.bias,
|
47 |
+
) if triton_mlp else MLP(config)
|
48 |
+
self.rn_4 = RMSNorm(config.n_embd)
|
49 |
+
|
50 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
51 |
+
x = x + self.stu(self.rn_1(x))
|
52 |
+
x = x + self.mlp(self.rn_2(x))
|
53 |
+
x = x + self.attn(self.rn_3(x))
|
54 |
+
x = x + self.mlp(self.rn_4(x))
|
55 |
+
return x
|
56 |
+
|
57 |
+
class FlashSTU(PreTrainedModel):
|
58 |
+
config_class = FlashSTUConfig
|
59 |
+
|
60 |
+
def __init__(self, config) -> None:
|
61 |
+
super(FlashSTU, self).__init__(config)
|
62 |
+
self.config = config
|
63 |
+
self.n_layers = config.n_layers
|
64 |
+
self.n_embd = config.n_embd
|
65 |
+
self.mlp_scale = config.mlp_scale
|
66 |
+
self.seq_len = config.seq_len
|
67 |
+
self.n = nearest_power_of_two(self.seq_len * 2 - 1, round_up=True)
|
68 |
+
self.vocab_size = config.vocab_size
|
69 |
+
self.K = config.num_eigh
|
70 |
+
self.use_hankel_L = config.use_hankel_L
|
71 |
+
self.phi = get_spectral_filters(self.seq_len, self.K, self.use_hankel_L)
|
72 |
+
self.use_approx = config.use_approx
|
73 |
+
self.dropout = config.dropout
|
74 |
+
self.bias = config.bias
|
75 |
+
self.loss_fn = CrossEntropyLoss()
|
76 |
+
|
77 |
+
self.flash_stu = nn.ModuleDict(
|
78 |
+
dict(
|
79 |
+
tok_emb=nn.Embedding(self.vocab_size, self.n_embd),
|
80 |
+
dropout=nn.Dropout(self.dropout),
|
81 |
+
hidden=nn.ModuleList(
|
82 |
+
[
|
83 |
+
Block(self.config, self.phi, self.n)
|
84 |
+
for _ in range(self.n_layers)
|
85 |
+
]
|
86 |
+
),
|
87 |
+
rn_f=RMSNorm(config.n_embd)
|
88 |
+
)
|
89 |
+
)
|
90 |
+
self.lm_head = nn.Linear(self.n_embd, self.vocab_size, bias=self.bias)
|
91 |
+
|
92 |
+
self.std = (self.n_embd) ** -0.5
|
93 |
+
self.apply(self._init_weights)
|
94 |
+
print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))
|
95 |
+
|
96 |
+
def forward(self, x: torch.Tensor) -> torch.tensor:
|
97 |
+
tok_emb = self.flash_stu.tok_emb(x)
|
98 |
+
x = self.flash_stu.dropout(tok_emb)
|
99 |
+
|
100 |
+
for block in self.flash_stu.hidden:
|
101 |
+
x = block(x)
|
102 |
+
x = self.flash_stu.rn_f(x)
|
103 |
+
|
104 |
+
y_hat = self.lm_head(x)
|
105 |
+
return y_hat
|
106 |
+
|
107 |
+
def _get_num_params(self):
|
108 |
+
n_params = sum(p.numel() for p in self.parameters())
|
109 |
+
return n_params
|
110 |
+
|
111 |
+
def _init_weights(self, module):
|
112 |
+
if isinstance(module, nn.Linear):
|
113 |
+
if hasattr(module, "SCALE_INIT"):
|
114 |
+
self.std *= (2 * self.n_layers) ** -0.5
|
115 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
|
116 |
+
if module.bias is not None:
|
117 |
+
torch.nn.init.zeros_(module.bias)
|
118 |
+
elif isinstance(module, nn.Embedding):
|
119 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
|
120 |
+
elif isinstance(module, STU):
|
121 |
+
if self.use_approx:
|
122 |
+
torch.nn.init.xavier_normal_(module.M_inputs)
|
123 |
+
torch.nn.init.xavier_normal_(module.M_filters)
|
124 |
+
else:
|
125 |
+
torch.nn.init.xavier_normal_(module.M_phi_plus)
|
126 |
+
torch.nn.init.xavier_normal_(module.M_phi_minus)
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 9784503296
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"flash_stu.hidden.0.attn.c_attn.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"flash_stu.hidden.0.attn.c_proj.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"flash_stu.hidden.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"flash_stu.hidden.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"flash_stu.hidden.0.rn_1.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"flash_stu.hidden.0.rn_2.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"flash_stu.hidden.0.rn_3.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"flash_stu.hidden.0.rn_4.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"flash_stu.hidden.0.stu.M_filters": "model-00001-of-00003.safetensors",
|
15 |
+
"flash_stu.hidden.0.stu.M_inputs": "model-00001-of-00003.safetensors",
|
16 |
+
"flash_stu.hidden.0.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
|
17 |
+
"flash_stu.hidden.0.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
|
18 |
+
"flash_stu.hidden.0.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
|
19 |
+
"flash_stu.hidden.0.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
|
20 |
+
"flash_stu.hidden.0.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
|
21 |
+
"flash_stu.hidden.0.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
|
22 |
+
"flash_stu.hidden.0.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
|
23 |
+
"flash_stu.hidden.0.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
|
24 |
+
"flash_stu.hidden.1.attn.c_attn.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"flash_stu.hidden.1.attn.c_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"flash_stu.hidden.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
27 |
+
"flash_stu.hidden.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"flash_stu.hidden.1.rn_1.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"flash_stu.hidden.1.rn_2.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"flash_stu.hidden.1.rn_3.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"flash_stu.hidden.1.rn_4.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"flash_stu.hidden.1.stu.M_filters": "model-00001-of-00003.safetensors",
|
33 |
+
"flash_stu.hidden.1.stu.M_inputs": "model-00001-of-00003.safetensors",
|
34 |
+
"flash_stu.hidden.1.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
|
35 |
+
"flash_stu.hidden.1.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
|
36 |
+
"flash_stu.hidden.1.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
|
37 |
+
"flash_stu.hidden.1.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
|
38 |
+
"flash_stu.hidden.1.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
|
39 |
+
"flash_stu.hidden.1.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
|
40 |
+
"flash_stu.hidden.1.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
|
41 |
+
"flash_stu.hidden.1.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
|
42 |
+
"flash_stu.hidden.2.attn.c_attn.weight": "model-00001-of-00003.safetensors",
|
43 |
+
"flash_stu.hidden.2.attn.c_proj.weight": "model-00001-of-00003.safetensors",
|
44 |
+
"flash_stu.hidden.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
|
45 |
+
"flash_stu.hidden.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
|
46 |
+
"flash_stu.hidden.2.rn_1.weight": "model-00001-of-00003.safetensors",
|
47 |
+
"flash_stu.hidden.2.rn_2.weight": "model-00001-of-00003.safetensors",
|
48 |
+
"flash_stu.hidden.2.rn_3.weight": "model-00001-of-00003.safetensors",
|
49 |
+
"flash_stu.hidden.2.rn_4.weight": "model-00001-of-00003.safetensors",
|
50 |
+
"flash_stu.hidden.2.stu.M_filters": "model-00001-of-00003.safetensors",
|
51 |
+
"flash_stu.hidden.2.stu.M_inputs": "model-00001-of-00003.safetensors",
|
52 |
+
"flash_stu.hidden.2.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
|
53 |
+
"flash_stu.hidden.2.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
|
54 |
+
"flash_stu.hidden.2.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
|
55 |
+
"flash_stu.hidden.2.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
|
56 |
+
"flash_stu.hidden.2.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
|
57 |
+
"flash_stu.hidden.2.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
|
58 |
+
"flash_stu.hidden.2.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
|
59 |
+
"flash_stu.hidden.2.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
|
60 |
+
"flash_stu.hidden.3.attn.c_attn.weight": "model-00001-of-00003.safetensors",
|
61 |
+
"flash_stu.hidden.3.attn.c_proj.weight": "model-00001-of-00003.safetensors",
|
62 |
+
"flash_stu.hidden.3.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"flash_stu.hidden.3.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"flash_stu.hidden.3.rn_1.weight": "model-00001-of-00003.safetensors",
|
65 |
+
"flash_stu.hidden.3.rn_2.weight": "model-00001-of-00003.safetensors",
|
66 |
+
"flash_stu.hidden.3.rn_3.weight": "model-00001-of-00003.safetensors",
|
67 |
+
"flash_stu.hidden.3.rn_4.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"flash_stu.hidden.3.stu.M_filters": "model-00001-of-00003.safetensors",
|
69 |
+
"flash_stu.hidden.3.stu.M_inputs": "model-00001-of-00003.safetensors",
|
70 |
+
"flash_stu.hidden.3.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
|
71 |
+
"flash_stu.hidden.3.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
|
72 |
+
"flash_stu.hidden.3.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
|
73 |
+
"flash_stu.hidden.3.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
|
74 |
+
"flash_stu.hidden.3.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
|
75 |
+
"flash_stu.hidden.3.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
|
76 |
+
"flash_stu.hidden.3.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
|
77 |
+
"flash_stu.hidden.3.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
|
78 |
+
"flash_stu.hidden.4.attn.c_attn.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"flash_stu.hidden.4.attn.c_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"flash_stu.hidden.4.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"flash_stu.hidden.4.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"flash_stu.hidden.4.rn_1.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"flash_stu.hidden.4.rn_2.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"flash_stu.hidden.4.rn_3.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"flash_stu.hidden.4.rn_4.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"flash_stu.hidden.4.stu.M_filters": "model-00002-of-00003.safetensors",
|
87 |
+
"flash_stu.hidden.4.stu.M_inputs": "model-00002-of-00003.safetensors",
|
88 |
+
"flash_stu.hidden.4.stu.flash_fft.f_16_fft": "model-00002-of-00003.safetensors",
|
89 |
+
"flash_stu.hidden.4.stu.flash_fft.f_16_ifft": "model-00002-of-00003.safetensors",
|
90 |
+
"flash_stu.hidden.4.stu.flash_fft.f_32_fft": "model-00002-of-00003.safetensors",
|
91 |
+
"flash_stu.hidden.4.stu.flash_fft.f_32_ifft": "model-00002-of-00003.safetensors",
|
92 |
+
"flash_stu.hidden.4.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00002-of-00003.safetensors",
|
93 |
+
"flash_stu.hidden.4.stu.flash_fft.twiddle_factors_fft_32_32": "model-00002-of-00003.safetensors",
|
94 |
+
"flash_stu.hidden.4.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00002-of-00003.safetensors",
|
95 |
+
"flash_stu.hidden.4.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00002-of-00003.safetensors",
|
96 |
+
"flash_stu.hidden.5.attn.c_attn.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"flash_stu.hidden.5.attn.c_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"flash_stu.hidden.5.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"flash_stu.hidden.5.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"flash_stu.hidden.5.rn_1.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"flash_stu.hidden.5.rn_2.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"flash_stu.hidden.5.rn_3.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"flash_stu.hidden.5.rn_4.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"flash_stu.hidden.5.stu.M_filters": "model-00002-of-00003.safetensors",
|
105 |
+
"flash_stu.hidden.5.stu.M_inputs": "model-00002-of-00003.safetensors",
|
106 |
+
"flash_stu.hidden.5.stu.flash_fft.f_16_fft": "model-00002-of-00003.safetensors",
|
107 |
+
"flash_stu.hidden.5.stu.flash_fft.f_16_ifft": "model-00002-of-00003.safetensors",
|
108 |
+
"flash_stu.hidden.5.stu.flash_fft.f_32_fft": "model-00002-of-00003.safetensors",
|
109 |
+
"flash_stu.hidden.5.stu.flash_fft.f_32_ifft": "model-00002-of-00003.safetensors",
|
110 |
+
"flash_stu.hidden.5.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00002-of-00003.safetensors",
|
111 |
+
"flash_stu.hidden.5.stu.flash_fft.twiddle_factors_fft_32_32": "model-00002-of-00003.safetensors",
|
112 |
+
"flash_stu.hidden.5.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00002-of-00003.safetensors",
|
113 |
+
"flash_stu.hidden.5.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00002-of-00003.safetensors",
|
114 |
+
"flash_stu.hidden.6.attn.c_attn.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"flash_stu.hidden.6.attn.c_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"flash_stu.hidden.6.mlp.fc1.weight": "model-00002-of-00003.safetensors",
|
117 |
+
"flash_stu.hidden.6.mlp.fc2.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"flash_stu.hidden.6.rn_1.weight": "model-00002-of-00003.safetensors",
|
119 |
+
"flash_stu.hidden.6.rn_2.weight": "model-00002-of-00003.safetensors",
|
120 |
+
"flash_stu.hidden.6.rn_3.weight": "model-00002-of-00003.safetensors",
|
121 |
+
"flash_stu.hidden.6.rn_4.weight": "model-00002-of-00003.safetensors",
|
122 |
+
"flash_stu.hidden.6.stu.M_filters": "model-00002-of-00003.safetensors",
|
123 |
+
"flash_stu.hidden.6.stu.M_inputs": "model-00002-of-00003.safetensors",
|
124 |
+
"flash_stu.hidden.6.stu.flash_fft.f_16_fft": "model-00002-of-00003.safetensors",
|
125 |
+
"flash_stu.hidden.6.stu.flash_fft.f_16_ifft": "model-00002-of-00003.safetensors",
|
126 |
+
"flash_stu.hidden.6.stu.flash_fft.f_32_fft": "model-00002-of-00003.safetensors",
|
127 |
+
"flash_stu.hidden.6.stu.flash_fft.f_32_ifft": "model-00002-of-00003.safetensors",
|
128 |
+
"flash_stu.hidden.6.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00002-of-00003.safetensors",
|
129 |
+
"flash_stu.hidden.6.stu.flash_fft.twiddle_factors_fft_32_32": "model-00002-of-00003.safetensors",
|
130 |
+
"flash_stu.hidden.6.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00002-of-00003.safetensors",
|
131 |
+
"flash_stu.hidden.6.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00002-of-00003.safetensors",
|
132 |
+
"flash_stu.rn_f.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"flash_stu.tok_emb.weight": "model-00001-of-00003.safetensors",
|
134 |
+
"lm_head.weight": "model-00003-of-00003.safetensors"
|
135 |
+
}
|
136 |
+
}
|