windsornguyen commited on
Commit
b0544cb
1 Parent(s): 0b8206a

Upload FlashSTU

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "FlashSTU"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "config.FlashSTUConfig",
7
+ "AutoModel": "model.FlashSTU"
8
+ },
9
+ "bias": false,
10
+ "bsz": 4,
11
+ "dropout": 0.0,
12
+ "mlp_scale": 12,
13
+ "model_type": "FlashSTU",
14
+ "n_embd": 2304,
15
+ "n_heads": 9,
16
+ "n_layers": 7,
17
+ "num_eigh": 24,
18
+ "seq_len": 8192,
19
+ "softcap": 50.0,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.44.0",
22
+ "use_approx": true,
23
+ "use_flash_fft": true,
24
+ "use_hankel_L": false,
25
+ "vocab_size": 200064,
26
+ "window_size": 1024
27
+ }
config.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+ class FlashSTUConfig(PretrainedConfig):
4
+ model_type = "FlashSTU"
5
+
6
+ def __init__(
7
+ self,
8
+ bsz: int = 4,
9
+ n_embd: int = 2304,
10
+ n_heads: int = 9,
11
+ n_layers: int = 7,
12
+ seq_len: int = 8192,
13
+ window_size: int = 1024,
14
+ vocab_size: int = 200064,
15
+ mlp_scale: int = 12,
16
+ bias: bool = False,
17
+ dropout: float = 0.0,
18
+ num_eigh: int = 24,
19
+ use_hankel_L: bool = False,
20
+ use_flash_fft: bool = True,
21
+ use_approx: bool = True,
22
+ softcap: float = 50.0,
23
+ **kwargs,
24
+ ):
25
+ super().__init__(**kwargs)
26
+ self.bsz = bsz
27
+ self.n_embd = n_embd
28
+ self.n_heads = n_heads
29
+ self.n_layers = n_layers
30
+ self.seq_len = seq_len
31
+ self.window_size = window_size
32
+ self.vocab_size = vocab_size
33
+ self.mlp_scale = mlp_scale
34
+ self.bias = bias
35
+ self.dropout = dropout
36
+ self.num_eigh = num_eigh
37
+ self.use_hankel_L = use_hankel_L
38
+ self.use_flash_fft = use_flash_fft
39
+ self.use_approx = use_approx
40
+ self.softcap = softcap
model-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7333db4c5bf7217636fe39e184d8d723061529794c7167953c4b772e8fdb2a3
3
+ size 4563328000
model-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc0f3d8a6dfa78b57f6f93b9c473505206f090dc87dcaa072b3b678906030825
3
+ size 3377400416
model-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3ecd382455c5a564824d7b9a5ad1ee430809d73f86c04ee4884188ee330eeca
3
+ size 1843789952
model.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+ from transformers import PreTrainedModel
6
+
7
+ from stu import STU
8
+ from modules import Attention
9
+ from utils import get_spectral_filters, nearest_power_of_two
10
+ from flash_stu.config import FlashSTUConfig
11
+
12
+ try:
13
+ from flash_attn.modules.mlp import GatedMlp as MLP
14
+ triton_mlp = True
15
+ except ImportError as e:
16
+ print(f"Unable to import Triton-based MLP: {e}. Falling back to vanilla SwiGLU MLP instead.")
17
+ from modules import MLP
18
+ triton_mlp = False
19
+
20
+ try:
21
+ from flash_attn.ops.triton.layer_norm import RMSNorm
22
+ except ImportError as e:
23
+ print(f"Unable to import Triton-based RMSNorm: {e}. Falling back to PyTorch implementation.")
24
+ from torch.nn import RMSNorm
25
+
26
+ try:
27
+ from flash_attn.losses.cross_entropy import CrossEntropyLoss
28
+ except ImportError as e:
29
+ print(f"Unable to import Triton-based cross entropy loss: {e}. Falling back to PyTorch implementation.")
30
+ from torch.nn import CrossEntropyLoss
31
+
32
+ class Block(nn.Module):
33
+ def __init__(self, config, phi, n) -> None:
34
+ super(Block, self).__init__()
35
+ # For more complex %-split arrangements, see https://arxiv.org/pdf/2406.07887
36
+ self.rn_1 = RMSNorm(config.n_embd)
37
+ self.stu = STU(config, phi, n)
38
+ self.rn_2 = RMSNorm(config.n_embd)
39
+ self.attn = Attention(config)
40
+ self.rn_3 = RMSNorm(config.n_embd)
41
+ self.mlp = MLP(
42
+ config.n_embd,
43
+ config.n_embd * config.mlp_scale,
44
+ activation=F.silu, # Use SwiGLU
45
+ bias1=config.bias,
46
+ bias2=config.bias,
47
+ ) if triton_mlp else MLP(config)
48
+ self.rn_4 = RMSNorm(config.n_embd)
49
+
50
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
51
+ x = x + self.stu(self.rn_1(x))
52
+ x = x + self.mlp(self.rn_2(x))
53
+ x = x + self.attn(self.rn_3(x))
54
+ x = x + self.mlp(self.rn_4(x))
55
+ return x
56
+
57
+ class FlashSTU(PreTrainedModel):
58
+ config_class = FlashSTUConfig
59
+
60
+ def __init__(self, config) -> None:
61
+ super(FlashSTU, self).__init__(config)
62
+ self.config = config
63
+ self.n_layers = config.n_layers
64
+ self.n_embd = config.n_embd
65
+ self.mlp_scale = config.mlp_scale
66
+ self.seq_len = config.seq_len
67
+ self.n = nearest_power_of_two(self.seq_len * 2 - 1, round_up=True)
68
+ self.vocab_size = config.vocab_size
69
+ self.K = config.num_eigh
70
+ self.use_hankel_L = config.use_hankel_L
71
+ self.phi = get_spectral_filters(self.seq_len, self.K, self.use_hankel_L)
72
+ self.use_approx = config.use_approx
73
+ self.dropout = config.dropout
74
+ self.bias = config.bias
75
+ self.loss_fn = CrossEntropyLoss()
76
+
77
+ self.flash_stu = nn.ModuleDict(
78
+ dict(
79
+ tok_emb=nn.Embedding(self.vocab_size, self.n_embd),
80
+ dropout=nn.Dropout(self.dropout),
81
+ hidden=nn.ModuleList(
82
+ [
83
+ Block(self.config, self.phi, self.n)
84
+ for _ in range(self.n_layers)
85
+ ]
86
+ ),
87
+ rn_f=RMSNorm(config.n_embd)
88
+ )
89
+ )
90
+ self.lm_head = nn.Linear(self.n_embd, self.vocab_size, bias=self.bias)
91
+
92
+ self.std = (self.n_embd) ** -0.5
93
+ self.apply(self._init_weights)
94
+ print("Model Parameter Count: %.2fM\n" % (self._get_num_params() / 1e6,))
95
+
96
+ def forward(self, x: torch.Tensor) -> torch.tensor:
97
+ tok_emb = self.flash_stu.tok_emb(x)
98
+ x = self.flash_stu.dropout(tok_emb)
99
+
100
+ for block in self.flash_stu.hidden:
101
+ x = block(x)
102
+ x = self.flash_stu.rn_f(x)
103
+
104
+ y_hat = self.lm_head(x)
105
+ return y_hat
106
+
107
+ def _get_num_params(self):
108
+ n_params = sum(p.numel() for p in self.parameters())
109
+ return n_params
110
+
111
+ def _init_weights(self, module):
112
+ if isinstance(module, nn.Linear):
113
+ if hasattr(module, "SCALE_INIT"):
114
+ self.std *= (2 * self.n_layers) ** -0.5
115
+ torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
116
+ if module.bias is not None:
117
+ torch.nn.init.zeros_(module.bias)
118
+ elif isinstance(module, nn.Embedding):
119
+ torch.nn.init.normal_(module.weight, mean=0.0, std=self.std)
120
+ elif isinstance(module, STU):
121
+ if self.use_approx:
122
+ torch.nn.init.xavier_normal_(module.M_inputs)
123
+ torch.nn.init.xavier_normal_(module.M_filters)
124
+ else:
125
+ torch.nn.init.xavier_normal_(module.M_phi_plus)
126
+ torch.nn.init.xavier_normal_(module.M_phi_minus)
model.safetensors.index.json ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 9784503296
4
+ },
5
+ "weight_map": {
6
+ "flash_stu.hidden.0.attn.c_attn.weight": "model-00001-of-00003.safetensors",
7
+ "flash_stu.hidden.0.attn.c_proj.weight": "model-00001-of-00003.safetensors",
8
+ "flash_stu.hidden.0.mlp.fc1.weight": "model-00001-of-00003.safetensors",
9
+ "flash_stu.hidden.0.mlp.fc2.weight": "model-00001-of-00003.safetensors",
10
+ "flash_stu.hidden.0.rn_1.weight": "model-00001-of-00003.safetensors",
11
+ "flash_stu.hidden.0.rn_2.weight": "model-00001-of-00003.safetensors",
12
+ "flash_stu.hidden.0.rn_3.weight": "model-00001-of-00003.safetensors",
13
+ "flash_stu.hidden.0.rn_4.weight": "model-00001-of-00003.safetensors",
14
+ "flash_stu.hidden.0.stu.M_filters": "model-00001-of-00003.safetensors",
15
+ "flash_stu.hidden.0.stu.M_inputs": "model-00001-of-00003.safetensors",
16
+ "flash_stu.hidden.0.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
17
+ "flash_stu.hidden.0.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
18
+ "flash_stu.hidden.0.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
19
+ "flash_stu.hidden.0.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
20
+ "flash_stu.hidden.0.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
21
+ "flash_stu.hidden.0.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
22
+ "flash_stu.hidden.0.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
23
+ "flash_stu.hidden.0.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
24
+ "flash_stu.hidden.1.attn.c_attn.weight": "model-00001-of-00003.safetensors",
25
+ "flash_stu.hidden.1.attn.c_proj.weight": "model-00001-of-00003.safetensors",
26
+ "flash_stu.hidden.1.mlp.fc1.weight": "model-00001-of-00003.safetensors",
27
+ "flash_stu.hidden.1.mlp.fc2.weight": "model-00001-of-00003.safetensors",
28
+ "flash_stu.hidden.1.rn_1.weight": "model-00001-of-00003.safetensors",
29
+ "flash_stu.hidden.1.rn_2.weight": "model-00001-of-00003.safetensors",
30
+ "flash_stu.hidden.1.rn_3.weight": "model-00001-of-00003.safetensors",
31
+ "flash_stu.hidden.1.rn_4.weight": "model-00001-of-00003.safetensors",
32
+ "flash_stu.hidden.1.stu.M_filters": "model-00001-of-00003.safetensors",
33
+ "flash_stu.hidden.1.stu.M_inputs": "model-00001-of-00003.safetensors",
34
+ "flash_stu.hidden.1.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
35
+ "flash_stu.hidden.1.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
36
+ "flash_stu.hidden.1.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
37
+ "flash_stu.hidden.1.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
38
+ "flash_stu.hidden.1.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
39
+ "flash_stu.hidden.1.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
40
+ "flash_stu.hidden.1.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
41
+ "flash_stu.hidden.1.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
42
+ "flash_stu.hidden.2.attn.c_attn.weight": "model-00001-of-00003.safetensors",
43
+ "flash_stu.hidden.2.attn.c_proj.weight": "model-00001-of-00003.safetensors",
44
+ "flash_stu.hidden.2.mlp.fc1.weight": "model-00001-of-00003.safetensors",
45
+ "flash_stu.hidden.2.mlp.fc2.weight": "model-00001-of-00003.safetensors",
46
+ "flash_stu.hidden.2.rn_1.weight": "model-00001-of-00003.safetensors",
47
+ "flash_stu.hidden.2.rn_2.weight": "model-00001-of-00003.safetensors",
48
+ "flash_stu.hidden.2.rn_3.weight": "model-00001-of-00003.safetensors",
49
+ "flash_stu.hidden.2.rn_4.weight": "model-00001-of-00003.safetensors",
50
+ "flash_stu.hidden.2.stu.M_filters": "model-00001-of-00003.safetensors",
51
+ "flash_stu.hidden.2.stu.M_inputs": "model-00001-of-00003.safetensors",
52
+ "flash_stu.hidden.2.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
53
+ "flash_stu.hidden.2.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
54
+ "flash_stu.hidden.2.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
55
+ "flash_stu.hidden.2.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
56
+ "flash_stu.hidden.2.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
57
+ "flash_stu.hidden.2.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
58
+ "flash_stu.hidden.2.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
59
+ "flash_stu.hidden.2.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
60
+ "flash_stu.hidden.3.attn.c_attn.weight": "model-00001-of-00003.safetensors",
61
+ "flash_stu.hidden.3.attn.c_proj.weight": "model-00001-of-00003.safetensors",
62
+ "flash_stu.hidden.3.mlp.fc1.weight": "model-00002-of-00003.safetensors",
63
+ "flash_stu.hidden.3.mlp.fc2.weight": "model-00002-of-00003.safetensors",
64
+ "flash_stu.hidden.3.rn_1.weight": "model-00001-of-00003.safetensors",
65
+ "flash_stu.hidden.3.rn_2.weight": "model-00001-of-00003.safetensors",
66
+ "flash_stu.hidden.3.rn_3.weight": "model-00001-of-00003.safetensors",
67
+ "flash_stu.hidden.3.rn_4.weight": "model-00002-of-00003.safetensors",
68
+ "flash_stu.hidden.3.stu.M_filters": "model-00001-of-00003.safetensors",
69
+ "flash_stu.hidden.3.stu.M_inputs": "model-00001-of-00003.safetensors",
70
+ "flash_stu.hidden.3.stu.flash_fft.f_16_fft": "model-00001-of-00003.safetensors",
71
+ "flash_stu.hidden.3.stu.flash_fft.f_16_ifft": "model-00001-of-00003.safetensors",
72
+ "flash_stu.hidden.3.stu.flash_fft.f_32_fft": "model-00001-of-00003.safetensors",
73
+ "flash_stu.hidden.3.stu.flash_fft.f_32_ifft": "model-00001-of-00003.safetensors",
74
+ "flash_stu.hidden.3.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00001-of-00003.safetensors",
75
+ "flash_stu.hidden.3.stu.flash_fft.twiddle_factors_fft_32_32": "model-00001-of-00003.safetensors",
76
+ "flash_stu.hidden.3.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00001-of-00003.safetensors",
77
+ "flash_stu.hidden.3.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00001-of-00003.safetensors",
78
+ "flash_stu.hidden.4.attn.c_attn.weight": "model-00002-of-00003.safetensors",
79
+ "flash_stu.hidden.4.attn.c_proj.weight": "model-00002-of-00003.safetensors",
80
+ "flash_stu.hidden.4.mlp.fc1.weight": "model-00002-of-00003.safetensors",
81
+ "flash_stu.hidden.4.mlp.fc2.weight": "model-00002-of-00003.safetensors",
82
+ "flash_stu.hidden.4.rn_1.weight": "model-00002-of-00003.safetensors",
83
+ "flash_stu.hidden.4.rn_2.weight": "model-00002-of-00003.safetensors",
84
+ "flash_stu.hidden.4.rn_3.weight": "model-00002-of-00003.safetensors",
85
+ "flash_stu.hidden.4.rn_4.weight": "model-00002-of-00003.safetensors",
86
+ "flash_stu.hidden.4.stu.M_filters": "model-00002-of-00003.safetensors",
87
+ "flash_stu.hidden.4.stu.M_inputs": "model-00002-of-00003.safetensors",
88
+ "flash_stu.hidden.4.stu.flash_fft.f_16_fft": "model-00002-of-00003.safetensors",
89
+ "flash_stu.hidden.4.stu.flash_fft.f_16_ifft": "model-00002-of-00003.safetensors",
90
+ "flash_stu.hidden.4.stu.flash_fft.f_32_fft": "model-00002-of-00003.safetensors",
91
+ "flash_stu.hidden.4.stu.flash_fft.f_32_ifft": "model-00002-of-00003.safetensors",
92
+ "flash_stu.hidden.4.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00002-of-00003.safetensors",
93
+ "flash_stu.hidden.4.stu.flash_fft.twiddle_factors_fft_32_32": "model-00002-of-00003.safetensors",
94
+ "flash_stu.hidden.4.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00002-of-00003.safetensors",
95
+ "flash_stu.hidden.4.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00002-of-00003.safetensors",
96
+ "flash_stu.hidden.5.attn.c_attn.weight": "model-00002-of-00003.safetensors",
97
+ "flash_stu.hidden.5.attn.c_proj.weight": "model-00002-of-00003.safetensors",
98
+ "flash_stu.hidden.5.mlp.fc1.weight": "model-00002-of-00003.safetensors",
99
+ "flash_stu.hidden.5.mlp.fc2.weight": "model-00002-of-00003.safetensors",
100
+ "flash_stu.hidden.5.rn_1.weight": "model-00002-of-00003.safetensors",
101
+ "flash_stu.hidden.5.rn_2.weight": "model-00002-of-00003.safetensors",
102
+ "flash_stu.hidden.5.rn_3.weight": "model-00002-of-00003.safetensors",
103
+ "flash_stu.hidden.5.rn_4.weight": "model-00002-of-00003.safetensors",
104
+ "flash_stu.hidden.5.stu.M_filters": "model-00002-of-00003.safetensors",
105
+ "flash_stu.hidden.5.stu.M_inputs": "model-00002-of-00003.safetensors",
106
+ "flash_stu.hidden.5.stu.flash_fft.f_16_fft": "model-00002-of-00003.safetensors",
107
+ "flash_stu.hidden.5.stu.flash_fft.f_16_ifft": "model-00002-of-00003.safetensors",
108
+ "flash_stu.hidden.5.stu.flash_fft.f_32_fft": "model-00002-of-00003.safetensors",
109
+ "flash_stu.hidden.5.stu.flash_fft.f_32_ifft": "model-00002-of-00003.safetensors",
110
+ "flash_stu.hidden.5.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00002-of-00003.safetensors",
111
+ "flash_stu.hidden.5.stu.flash_fft.twiddle_factors_fft_32_32": "model-00002-of-00003.safetensors",
112
+ "flash_stu.hidden.5.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00002-of-00003.safetensors",
113
+ "flash_stu.hidden.5.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00002-of-00003.safetensors",
114
+ "flash_stu.hidden.6.attn.c_attn.weight": "model-00002-of-00003.safetensors",
115
+ "flash_stu.hidden.6.attn.c_proj.weight": "model-00002-of-00003.safetensors",
116
+ "flash_stu.hidden.6.mlp.fc1.weight": "model-00002-of-00003.safetensors",
117
+ "flash_stu.hidden.6.mlp.fc2.weight": "model-00002-of-00003.safetensors",
118
+ "flash_stu.hidden.6.rn_1.weight": "model-00002-of-00003.safetensors",
119
+ "flash_stu.hidden.6.rn_2.weight": "model-00002-of-00003.safetensors",
120
+ "flash_stu.hidden.6.rn_3.weight": "model-00002-of-00003.safetensors",
121
+ "flash_stu.hidden.6.rn_4.weight": "model-00002-of-00003.safetensors",
122
+ "flash_stu.hidden.6.stu.M_filters": "model-00002-of-00003.safetensors",
123
+ "flash_stu.hidden.6.stu.M_inputs": "model-00002-of-00003.safetensors",
124
+ "flash_stu.hidden.6.stu.flash_fft.f_16_fft": "model-00002-of-00003.safetensors",
125
+ "flash_stu.hidden.6.stu.flash_fft.f_16_ifft": "model-00002-of-00003.safetensors",
126
+ "flash_stu.hidden.6.stu.flash_fft.f_32_fft": "model-00002-of-00003.safetensors",
127
+ "flash_stu.hidden.6.stu.flash_fft.f_32_ifft": "model-00002-of-00003.safetensors",
128
+ "flash_stu.hidden.6.stu.flash_fft.twiddle_factors_fft_16_1K": "model-00002-of-00003.safetensors",
129
+ "flash_stu.hidden.6.stu.flash_fft.twiddle_factors_fft_32_32": "model-00002-of-00003.safetensors",
130
+ "flash_stu.hidden.6.stu.flash_fft.twiddle_factors_ifft_16_1K": "model-00002-of-00003.safetensors",
131
+ "flash_stu.hidden.6.stu.flash_fft.twiddle_factors_ifft_32_32": "model-00002-of-00003.safetensors",
132
+ "flash_stu.rn_f.weight": "model-00002-of-00003.safetensors",
133
+ "flash_stu.tok_emb.weight": "model-00001-of-00003.safetensors",
134
+ "lm_head.weight": "model-00003-of-00003.safetensors"
135
+ }
136
+ }