Upload Cnn8RnnSoundEventDetection
Browse files- config.json +4 -0
- hf_model.py +227 -0
config.json
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
"architectures": [
|
3 |
"Cnn8RnnSoundEventDetection"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"classes_num": 447,
|
6 |
"torch_dtype": "float32",
|
7 |
"transformers_version": "4.30.2"
|
|
|
2 |
"architectures": [
|
3 |
"Cnn8RnnSoundEventDetection"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "hf_model.Cnn8RnnConfig",
|
7 |
+
"AutoModel": "hf_model.Cnn8RnnSoundEventDetection"
|
8 |
+
},
|
9 |
"classes_num": 447,
|
10 |
"torch_dtype": "float32",
|
11 |
"transformers_version": "4.30.2"
|
hf_model.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torchaudio import transforms
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
8 |
+
from transformers.utils.hub import cached_file
|
9 |
+
|
10 |
+
|
11 |
+
def init_layer(layer):
|
12 |
+
"""Initialize a Linear or Convolutional layer. """
|
13 |
+
nn.init.xavier_uniform_(layer.weight)
|
14 |
+
|
15 |
+
if hasattr(layer, 'bias'):
|
16 |
+
if layer.bias is not None:
|
17 |
+
layer.bias.data.fill_(0.)
|
18 |
+
|
19 |
+
def init_bn(bn):
|
20 |
+
"""Initialize a Batchnorm layer. """
|
21 |
+
bn.bias.data.fill_(0.)
|
22 |
+
bn.weight.data.fill_(1.)
|
23 |
+
|
24 |
+
def interpolate(x, ratio):
|
25 |
+
"""Interpolate data in time domain. This is used to compensate the
|
26 |
+
resolution reduction in downsampling of a CNN.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
x: (batch_size, time_steps, classes_num)
|
30 |
+
ratio: int, ratio to interpolate
|
31 |
+
|
32 |
+
Returns:
|
33 |
+
upsampled: (batch_size, time_steps * ratio, classes_num)
|
34 |
+
"""
|
35 |
+
(batch_size, time_steps, classes_num) = x.shape
|
36 |
+
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
|
37 |
+
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
|
38 |
+
return upsampled
|
39 |
+
|
40 |
+
def pad_framewise_output(framewise_output, frames_num):
|
41 |
+
"""Pad framewise_output to the same length as input frames. The pad value
|
42 |
+
is the same as the value of the last frame.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
framewise_output: (batch_size, frames_num, classes_num)
|
46 |
+
frames_num: int, number of frames to pad
|
47 |
+
|
48 |
+
Outputs:
|
49 |
+
output: (batch_size, frames_num, classes_num)
|
50 |
+
"""
|
51 |
+
pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1)
|
52 |
+
"""tensor for padding"""
|
53 |
+
|
54 |
+
output = torch.cat((framewise_output, pad), dim=1)
|
55 |
+
"""(batch_size, frames_num, classes_num)"""
|
56 |
+
|
57 |
+
return output
|
58 |
+
|
59 |
+
|
60 |
+
class ConvBlock(nn.Module):
|
61 |
+
def __init__(self, in_channels, out_channels):
|
62 |
+
|
63 |
+
super(ConvBlock, self).__init__()
|
64 |
+
|
65 |
+
self.conv1 = nn.Conv2d(in_channels=in_channels,
|
66 |
+
out_channels=out_channels,
|
67 |
+
kernel_size=(3, 3), stride=(1, 1),
|
68 |
+
padding=(1, 1), bias=False)
|
69 |
+
|
70 |
+
self.conv2 = nn.Conv2d(in_channels=out_channels,
|
71 |
+
out_channels=out_channels,
|
72 |
+
kernel_size=(3, 3), stride=(1, 1),
|
73 |
+
padding=(1, 1), bias=False)
|
74 |
+
|
75 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
76 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
77 |
+
|
78 |
+
self.init_weight()
|
79 |
+
|
80 |
+
def init_weight(self):
|
81 |
+
init_layer(self.conv1)
|
82 |
+
init_layer(self.conv2)
|
83 |
+
init_bn(self.bn1)
|
84 |
+
init_bn(self.bn2)
|
85 |
+
|
86 |
+
|
87 |
+
def forward(self, input, pool_size=(2, 2), pool_type='avg'):
|
88 |
+
|
89 |
+
x = input
|
90 |
+
x = F.relu_(self.bn1(self.conv1(x)))
|
91 |
+
x = F.relu_(self.bn2(self.conv2(x)))
|
92 |
+
if pool_type == 'max':
|
93 |
+
x = F.max_pool2d(x, kernel_size=pool_size)
|
94 |
+
elif pool_type == 'avg':
|
95 |
+
x = F.avg_pool2d(x, kernel_size=pool_size)
|
96 |
+
elif pool_type == 'avg+max':
|
97 |
+
x1 = F.avg_pool2d(x, kernel_size=pool_size)
|
98 |
+
x2 = F.max_pool2d(x, kernel_size=pool_size)
|
99 |
+
x = x1 + x2
|
100 |
+
else:
|
101 |
+
raise Exception('Incorrect argument!')
|
102 |
+
|
103 |
+
return x
|
104 |
+
|
105 |
+
|
106 |
+
class LinearSoftmax(nn.Module):
|
107 |
+
def __init__(self, pooldim=1):
|
108 |
+
super().__init__()
|
109 |
+
self.pooldim = pooldim
|
110 |
+
|
111 |
+
def forward(self, time_decision):
|
112 |
+
return (time_decision**2).sum(self.pooldim) / time_decision.sum(
|
113 |
+
self.pooldim)
|
114 |
+
|
115 |
+
|
116 |
+
class Cnn8RnnConfig(PretrainedConfig):
|
117 |
+
|
118 |
+
def __init__(
|
119 |
+
self,
|
120 |
+
classes_num: int = 447,
|
121 |
+
**kwargs
|
122 |
+
):
|
123 |
+
self.classes_num = classes_num
|
124 |
+
super().__init__(**kwargs)
|
125 |
+
|
126 |
+
|
127 |
+
class Cnn8RnnSoundEventDetection(PreTrainedModel):
|
128 |
+
|
129 |
+
config_class = Cnn8RnnConfig
|
130 |
+
|
131 |
+
def __init__(self, config: Cnn8RnnConfig):
|
132 |
+
super().__init__(config)
|
133 |
+
self.config = config
|
134 |
+
self.time_resolution = 0.01
|
135 |
+
self.interpolate_ratio = 4 # Downsampled ratio
|
136 |
+
|
137 |
+
# Logmel spectrogram extractor
|
138 |
+
self.melspec_extractor = transforms.MelSpectrogram(
|
139 |
+
sample_rate=32000,
|
140 |
+
n_fft=1024,
|
141 |
+
win_length=1024,
|
142 |
+
hop_length=320,
|
143 |
+
f_min=50,
|
144 |
+
f_max=14000,
|
145 |
+
n_mels=64,
|
146 |
+
norm="slaney",
|
147 |
+
mel_scale="slaney"
|
148 |
+
)
|
149 |
+
self.db_transform = transforms.AmplitudeToDB()
|
150 |
+
|
151 |
+
self.bn0 = nn.BatchNorm2d(64)
|
152 |
+
|
153 |
+
self.conv_block1 = ConvBlock(in_channels=1, out_channels=64)
|
154 |
+
self.conv_block2 = ConvBlock(in_channels=64, out_channels=128)
|
155 |
+
self.conv_block3 = ConvBlock(in_channels=128, out_channels=256)
|
156 |
+
self.conv_block4 = ConvBlock(in_channels=256, out_channels=512)
|
157 |
+
|
158 |
+
self.fc1 = nn.Linear(512, 512, bias=True)
|
159 |
+
self.rnn = nn.GRU(512, 256, bidirectional=True, batch_first=True)
|
160 |
+
self.fc_audioset = nn.Linear(512, config.classes_num, bias=True)
|
161 |
+
self.temporal_pooling = LinearSoftmax()
|
162 |
+
|
163 |
+
self.init_weight()
|
164 |
+
|
165 |
+
def init_weight(self):
|
166 |
+
init_bn(self.bn0)
|
167 |
+
init_layer(self.fc1)
|
168 |
+
init_layer(self.fc_audioset)
|
169 |
+
|
170 |
+
def forward(self, waveform):
|
171 |
+
x = self.melspec_extractor(waveform)
|
172 |
+
x = self.db_transform(x) # (batch_size, mel_bins, time_steps)
|
173 |
+
x = x.transpose(1, 2)
|
174 |
+
x = x.unsqueeze(1)
|
175 |
+
|
176 |
+
frames_num = x.shape[2]
|
177 |
+
|
178 |
+
x = x.transpose(1, 3)
|
179 |
+
x = self.bn0(x)
|
180 |
+
x = x.transpose(1, 3)
|
181 |
+
|
182 |
+
x = self.conv_block1(x, pool_size=(2, 2), pool_type='avg+max')
|
183 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
184 |
+
x = self.conv_block2(x, pool_size=(2, 2), pool_type='avg+max')
|
185 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
186 |
+
x = self.conv_block3(x, pool_size=(1, 2), pool_type='avg+max')
|
187 |
+
x = F.dropout(x, p=0.2, training=self.training)
|
188 |
+
x = self.conv_block4(x, pool_size=(1, 2), pool_type='avg+max')
|
189 |
+
x = F.dropout(x, p=0.2, training=self.training) # (batch_size, 256, time_steps / 4, mel_bins / 16)
|
190 |
+
x = torch.mean(x, dim=3)
|
191 |
+
|
192 |
+
x = x.transpose(1, 2)
|
193 |
+
x = F.dropout(x, p=0.5, training=self.training)
|
194 |
+
x = F.relu_(self.fc1(x))
|
195 |
+
x, _ = self.rnn(x)
|
196 |
+
segmentwise_output = torch.sigmoid(self.fc_audioset(x)).clamp(1e-7, 1.)
|
197 |
+
clipwise_output = self.temporal_pooling(segmentwise_output)
|
198 |
+
|
199 |
+
# Get framewise output
|
200 |
+
framewise_output = interpolate(segmentwise_output,
|
201 |
+
self.interpolate_ratio)
|
202 |
+
framewise_output = pad_framewise_output(framewise_output, frames_num)
|
203 |
+
|
204 |
+
output_dict = {
|
205 |
+
'framewise_output': framewise_output,
|
206 |
+
'clipwise_output': clipwise_output
|
207 |
+
}
|
208 |
+
|
209 |
+
return output_dict
|
210 |
+
|
211 |
+
|
212 |
+
def save_pretrained(self, save_directory, *args, **kwargs):
|
213 |
+
super().save_pretrained(save_directory, *args, **kwargs)
|
214 |
+
with open(os.path.join(save_directory, "classes.txt"), "w") as f:
|
215 |
+
for class_name in self.classes:
|
216 |
+
f.write(class_name + "\n")
|
217 |
+
|
218 |
+
|
219 |
+
@classmethod
|
220 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *model_args,
|
221 |
+
**kwargs):
|
222 |
+
model = super().from_pretrained(pretrained_model_name_or_path,
|
223 |
+
*model_args, **kwargs)
|
224 |
+
class_file = cached_file(pretrained_model_name_or_path, "classes.txt")
|
225 |
+
with open(class_file, "w") as f:
|
226 |
+
model.classes = [l.strip() for l in f]
|
227 |
+
return model
|