ydshieh HF staff commited on
Commit
6eb6e60
1 Parent(s): 5d18dc3

Create draw_bboxes.py

Browse files
Files changed (1) hide show
  1. draw_bboxes.py +117 -0
draw_bboxes.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import torch
4
+ from PIL import Image
5
+ import torchvision.transforms as T
6
+ import cv2
7
+ import requests
8
+
9
+
10
+ def is_overlapping(rect1, rect2):
11
+ x1, y1, x2, y2 = rect1
12
+ x3, y3, x4, y4 = rect2
13
+ return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
14
+
15
+
16
+ def draw_entity_boxes_on_image(image, entities):
17
+ """_summary_
18
+
19
+ Args:
20
+ image (_type_): image or image path
21
+ collect_entity_location (_type_): _description_
22
+ """
23
+ if isinstance(image, Image.Image):
24
+ image_h = image.height
25
+ image_w = image.width
26
+ image = np.array(image)[:, :, [2, 1, 0]]
27
+ elif isinstance(image, str):
28
+ if os.path.exists(image):
29
+ pil_img = Image.open(image).convert("RGB")
30
+ image = np.array(pil_img)[:, :, [2, 1, 0]]
31
+ image_h = pil_img.height
32
+ image_w = pil_img.width
33
+ else:
34
+ raise ValueError(f"invaild image path, {image}")
35
+ elif isinstance(image, torch.Tensor):
36
+ # pdb.set_trace()
37
+ image_tensor = image.cpu()
38
+ reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
39
+ reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
40
+ image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
41
+ pil_img = T.ToPILImage()(image_tensor)
42
+ image_h = pil_img.height
43
+ image_w = pil_img.width
44
+ image = np.array(pil_img)[:, :, [2, 1, 0]]
45
+ else:
46
+ raise ValueError(f"invaild image format, {type(image)} for {image}")
47
+
48
+ if len(entities) == 0:
49
+ return image
50
+
51
+ new_image = image.copy()
52
+ previous_bboxes = []
53
+ # size of text
54
+ text_size = 2
55
+ # thickness of text
56
+ text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
57
+ box_line = 3
58
+ (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
59
+ base_height = int(text_height * 0.675)
60
+ text_offset_original = text_height - base_height
61
+ text_spaces = 3
62
+
63
+ for entity_name, (start, end), bboxes in entities:
64
+ for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes:
65
+ orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
66
+ # draw bbox
67
+ # random color
68
+ color = tuple(np.random.randint(0, 255, size=3).tolist())
69
+ new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
70
+
71
+ l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
72
+
73
+ x1 = orig_x1 - l_o
74
+ y1 = orig_y1 - l_o
75
+
76
+ if y1 < text_height + text_offset_original + 2 * text_spaces:
77
+ y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
78
+ x1 = orig_x1 + r_o
79
+
80
+ # add text background
81
+ (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
82
+ text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
83
+
84
+ for prev_bbox in previous_bboxes:
85
+ while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
86
+ text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
87
+ text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
88
+ y1 += (text_height + text_offset_original + 2 * text_spaces)
89
+
90
+ if text_bg_y2 >= image_h:
91
+ text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
92
+ text_bg_y2 = image_h
93
+ y1 = image_h
94
+ break
95
+
96
+ alpha = 0.5
97
+ for i in range(text_bg_y1, text_bg_y2):
98
+ for j in range(text_bg_x1, text_bg_x2):
99
+ if i < image_h and j < image_w:
100
+ if j < text_bg_x1 + 1.35 * c_width:
101
+ # original color
102
+ bg_color = color
103
+ else:
104
+ # white
105
+ bg_color = [255, 255, 255]
106
+ new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
107
+
108
+ cv2.putText(
109
+ new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
110
+ )
111
+ # previous_locations.append((x1, y1))
112
+ previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
113
+
114
+ pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
115
+ pil_image.save("new_snowman.jpg")
116
+
117
+ return new_image