--- language: - ga - en license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - ymoslem/IWSLT2023-GA-EN - ymoslem/FLEURS-GA-EN - ymoslem/BitesizeIrish-GA-EN - ymoslem/SpokenWords-GA-EN-MTed - ymoslem/Tatoeba-Speech-Irish - ymoslem/Wikimedia-Speech-Irish - ymoslem/Tatoeba-Speech-Irish-Noise-002 - ymoslem/Wikimedia-Speech-Irish-Noise-002 metrics: - bleu - wer model-index: - name: Whisper Medium GA-EN Speech Translation results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia type: ymoslem/IWSLT2023-GA-EN metrics: - name: Bleu type: bleu value: 33.46 - name: Wer type: wer value: 61.773975686627644 --- # Whisper Medium GA-EN Speech Translation This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. It achieves the following results on the evaluation set: - Loss: 1.3291 - Bleu: 33.46 - Chrf: 52.93 - Wer: 61.7740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - training_steps: 9000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |:-------------:|:------:|:----:|:-----:|:-----:|:---------------:|:--------:| | 2.4998 | 0.0236 | 100 | 4.24 | 19.77 | 2.0245 | 123.5029 | | 2.5999 | 0.0472 | 200 | 5.55 | 23.63 | 2.0729 | 130.1666 | | 2.4062 | 0.0708 | 300 | 5.92 | 24.15 | 1.9928 | 157.4966 | | 2.1866 | 0.0944 | 400 | 12.74 | 30.47 | 1.8337 | 93.4714 | | 2.2485 | 0.1180 | 500 | 10.32 | 30.65 | 1.8209 | 116.4791 | | 2.1521 | 0.1416 | 600 | 9.84 | 30.97 | 1.7512 | 130.1666 | | 1.9324 | 0.1653 | 700 | 17.24 | 34.37 | 1.7362 | 85.4570 | | 1.9703 | 0.1889 | 800 | 13.05 | 32.27 | 1.6784 | 105.7632 | | 1.7299 | 0.2125 | 900 | 9.81 | 31.71 | 1.6530 | 131.6974 | | 1.7822 | 0.2361 | 1000 | 11.72 | 32.5 | 1.5541 | 125.7091 | | 1.5493 | 0.2597 | 1100 | 15.04 | 36.72 | 1.5773 | 92.4358 | | 1.4813 | 0.2833 | 1200 | 22.08 | 40.11 | 1.5341 | 75.8667 | | 1.5285 | 0.3069 | 1300 | 18.88 | 40.93 | 1.4834 | 95.4975 | | 1.3255 | 0.3305 | 1400 | 20.11 | 40.82 | 1.4956 | 85.2319 | | 1.3931 | 0.3541 | 1500 | 22.81 | 41.51 | 1.4718 | 72.2197 | | 1.3962 | 0.3777 | 1600 | 25.43 | 43.53 | 1.3794 | 71.1842 | | 1.1412 | 0.4013 | 1700 | 22.13 | 43.19 | 1.4172 | 86.9428 | | 1.1132 | 0.4249 | 1800 | 21.27 | 42.45 | 1.3989 | 81.0896 | | 0.9261 | 0.4485 | 1900 | 26.39 | 45.4 | 1.4147 | 70.6889 | | 0.994 | 0.4721 | 2000 | 24.38 | 42.87 | 1.4365 | 77.5326 | | 0.8598 | 0.4958 | 2100 | 19.36 | 41.49 | 1.3559 | 96.6231 | | 0.7784 | 0.5194 | 2200 | 26.54 | 45.57 | 1.3550 | 69.5633 | | 0.7858 | 0.5430 | 2300 | 27.52 | 47.58 | 1.3156 | 68.8879 | | 0.7715 | 0.5666 | 2400 | 26.12 | 46.47 | 1.2985 | 72.5349 | | 0.7079 | 0.5902 | 2500 | 25.62 | 47.61 | 1.3134 | 68.6177 | | 0.6704 | 0.6138 | 2600 | 28.2 | 47.37 | 1.3047 | 69.1130 | | 0.6579 | 0.6374 | 2700 | 29.52 | 49.39 | 1.2486 | 68.2125 | | 0.502 | 0.6610 | 2800 | 28.08 | 48.99 | 1.2511 | 68.6177 | | 0.4442 | 0.6846 | 2900 | 32.57 | 50.66 | 1.2800 | 63.3498 | | 0.5175 | 0.7082 | 3000 | 29.69 | 48.77 | 1.2650 | 66.2314 | | 0.4416 | 0.7318 | 3100 | 32.36 | 50.29 | 1.2554 | 61.9090 | | 0.4529 | 0.7554 | 3200 | 32.6 | 50.94 | 1.2050 | 61.5489 | | 0.4435 | 0.7790 | 3300 | 33.2 | 52.17 | 1.2103 | 61.3688 | | 0.3724 | 0.8026 | 3400 | 33.89 | 52.88 | 1.1756 | 59.8379 | | 0.3883 | 0.8263 | 3500 | 32.21 | 51.86 | 1.1979 | 62.0891 | | 0.3534 | 0.8499 | 3600 | 32.75 | 51.85 | 1.1943 | 61.2337 | | 0.326 | 0.8735 | 3700 | 32.43 | 51.5 | 1.1891 | 62.1342 | | 0.305 | 0.8971 | 3800 | 33.43 | 51.45 | 1.1858 | 59.4327 | | 0.2258 | 0.9207 | 3900 | 32.53 | 51.42 | 1.1827 | 61.1887 | | 0.3104 | 0.9443 | 4000 | 32.1 | 51.33 | 1.1857 | 61.2337 | | 0.3847 | 0.9679 | 4100 | 1.3506| 29.91 | 48.63 | 66.5466 | | 0.426 | 0.9915 | 4200 | 1.3458| 25.68 | 45.27 | 70.1036 | | 0.2622 | 1.0151 | 4300 | 1.3544| 27.52 | 48.0 | 66.4115 | | 0.2429 | 1.0387 | 4400 | 1.4330| 22.57 | 45.45 | 79.9190 | | 0.269 | 1.0623 | 4500 | 1.4399| 24.7 | 45.73 | 74.7411 | | 0.3171 | 1.0859 | 4600 | 1.3711| 29.55 | 47.78 | 68.4827 | | 0.2321 | 1.1095 | 4700 | 1.4350| 24.73 | 45.52 | 77.1724 | | 0.2595 | 1.1331 | 4800 | 1.3851| 30.54 | 47.85 | 65.1508 | | 0.2426 | 1.1568 | 4900 | 1.4109| 28.87 | 47.5 | 68.3926 | | 0.2496 | 1.1804 | 5000 | 1.3717| 29.97 | 48.74 | 68.6628 | | 0.2551 | 1.2040 | 5100 | 1.4157| 29.92 | 47.59 | 66.3215 | | 0.231 | 1.2276 | 5200 | 1.3908| 28.97 | 47.9 | 66.0063 | | 0.245 | 1.2512 | 5300 | 1.4082| 30.22 | 47.71 | 63.7100 | | 0.284 | 1.2748 | 5400 | 1.3696| 27.47 | 48.31 | 70.7789 | | 0.2284 | 1.2984 | 5500 | 1.4044| 27.63 | 47.37 | 68.2575 | | 0.2457 | 1.3220 | 5600 | 1.3722| 31.38 | 48.8 | 64.7906 | | 0.2346 | 1.3456 | 5700 | 1.3397| 33.61 | 50.14 | 60.3332 | | 0.2088 | 1.3692 | 5800 | 1.3920| 30.84 | 48.51 | 65.4660 | | 0.1832 | 1.3928 | 5900 | 1.3892| 31.47 | 49.56 | 64.5205 | | 0.2171 | 1.4164 | 6000 | 1.3606| 32.51 | 49.8 | 63.1697 | | 0.1799 | 1.4400 | 6100 | 1.4130| 30.8 | 50.05 | 63.3949 | | 0.1756 | 1.4636 | 6200 | 1.3458| 30.25 | 50.16 | 66.1864 | | 0.1617 | 1.4873 | 6300 | 1.3971| 32.27 | 50.74 | 63.4849 | | 0.1909 | 1.5109 | 6400 | 1.4275| 27.41 | 47.04 | 72.0396 | | 0.1516 | 1.5345 | 6500 | 1.3591| 30.1 | 49.05 | 66.0513 | | 0.1892 | 1.5581 | 6600 | 1.3646| 31.72 | 48.17 | 62.6294 | | 0.2086 | 1.5817 | 6700 | 1.3314| 28.85 | 49.68 | 67.3120 | | 0.1253 | 1.6053 | 6800 | 1.3461| 29.84 | 49.13 | 66.5466 | | 0.1307 | 1.6289 | 6900 | 1.3671| 29.39 | 48.77 | 67.7172 | | 0.1376 | 1.6525 | 7000 | 1.3769| 31.27 | 47.97 | 66.5916 | | 0.1593 | 1.6761 | 7100 | 1.3699| 30.53 | 49.33 | 65.4660 | | 0.1604 | 1.6997 | 7200 | 1.3540| 31.99 | 48.93 | 63.8001 | | 0.118 | 1.7233 | 7300 | 1.3523| 29.52 | 49.26 | 67.5822 | | 0.1148 | 1.7469 | 7400 | 1.3130| 31.49 | 49.49 | 62.8996 | | 0.0946 | 1.7705 | 7500 | 1.3468| 32.6 | 49.76 | 63.1697 | | 0.0891 | 1.7941 | 7600 | 1.3268| 31.84 | 50.41 | 63.5750 | | 0.103 | 1.8178 | 7700 | 1.3243| 32.81 | 50.61 | 60.3782 | | 0.1016 | 1.8414 | 7800 | 1.2945| 33.07 | 53.14 | 61.0086 | | 0.1014 | 1.8650 | 7900 | 1.3163| 32.35 | 51.28 | 63.3498 | | 0.1257 | 1.8886 | 8000 | 1.3246| 31.65 | 51.86 | 61.7740 | | 0.0859 | 1.9122 | 8100 | 1.3247| 30.69 | 51.47 | 64.4304 | | 0.0943 | 1.9358 | 8200 | 1.3030| 33.06 | 52.31 | 61.6389 | | 0.11 | 1.9594 | 8300 | 1.2866| 33.32 | 52.83 | 60.1081 | | 0.0723 | 1.9830 | 8400 | 1.3071| 32.96 | 51.64 | 61.7740 | | 0.0312 | 2.0066 | 8500 | 1.3202| 33.2 | 52.78 | 62.0891 | | 0.0303 | 2.0302 | 8600 | 1.3348| 33.24 | 52.75 | 62.4043 | | 0.02 | 2.0538 | 8700 | 1.3447| 33.32 | 52.6 | 62.0891 | | 0.0329 | 2.0774 | 8800 | 1.3328| 34.04 | 52.93 | 60.7384 | | 0.0216 | 2.1010 | 8900 | 1.3266| 33.47 | 52.75 | 61.3237 | | 0.0224 | 2.1246 | 9000 | 1.3291| 33.46 | 52.93 | 61.7740 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1