Create README.zh.md
Browse files- README.zh.md +226 -0
README.zh.md
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### README (中文版)
|
2 |
+
|
3 |
+
# Qwen2-Boundless
|
4 |
+
|
5 |
+
## 简介
|
6 |
+
|
7 |
+
Qwen2-Boundless 是一个基于 Qwen2-1.5B-Instruct 微调的模型,专为回答各种类型的问题而设计,无论是道德的、违法的、色情的、暴力的内容,均可自由询问。该模型经过特殊的数据集训练,能够应对复杂和多样的场景。需要注意的是,微调数据集全部为中文,因此模型在处理中文时表现更佳。
|
8 |
+
|
9 |
+
> **警告**:本模型仅用于研究和测试目的,用户应遵循当地法律法规,并对自己的行为负责。
|
10 |
+
|
11 |
+
## 模型使用
|
12 |
+
|
13 |
+
你可以通过以下代码加载并使用该模型:
|
14 |
+
|
15 |
+
```python
|
16 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
17 |
+
import os
|
18 |
+
|
19 |
+
device = "cuda" # the device to load the model onto
|
20 |
+
current_directory = os.path.dirname(os.path.abspath(__file__))
|
21 |
+
|
22 |
+
model = AutoModelForCausalLM.from_pretrained(
|
23 |
+
current_directory,
|
24 |
+
torch_dtype="auto",
|
25 |
+
device_map="auto"
|
26 |
+
)
|
27 |
+
tokenizer = AutoTokenizer.from_pretrained(current_directory)
|
28 |
+
|
29 |
+
prompt = "Hello?"
|
30 |
+
messages = [
|
31 |
+
{"role": "system", "content": ""},
|
32 |
+
{"role": "user", "content": prompt}
|
33 |
+
]
|
34 |
+
text = tokenizer.apply_chat_template(
|
35 |
+
messages,
|
36 |
+
tokenize=False,
|
37 |
+
add_generation_prompt=True
|
38 |
+
)
|
39 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
40 |
+
|
41 |
+
generated_ids = model.generate(
|
42 |
+
model_inputs.input_ids,
|
43 |
+
max_new_tokens=512
|
44 |
+
)
|
45 |
+
generated_ids = [
|
46 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
47 |
+
]
|
48 |
+
|
49 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
50 |
+
print(response)
|
51 |
+
```
|
52 |
+
|
53 |
+
### 连续对话
|
54 |
+
|
55 |
+
要实现连续对话,可以使用以下代码:
|
56 |
+
|
57 |
+
```python
|
58 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
59 |
+
import torch
|
60 |
+
import os
|
61 |
+
|
62 |
+
device = "cuda" # the device to load the model onto
|
63 |
+
|
64 |
+
# 获取当前脚本所在的目录
|
65 |
+
current_directory = os.path.dirname(os.path.abspath(__file__))
|
66 |
+
|
67 |
+
model = AutoModelForCausalLM.from_pretrained(
|
68 |
+
current_directory,
|
69 |
+
torch_dtype="auto",
|
70 |
+
device_map="auto"
|
71 |
+
)
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(current_directory)
|
73 |
+
|
74 |
+
messages = [
|
75 |
+
{"role": "system", "content": "You are a helpful assistant."}
|
76 |
+
]
|
77 |
+
|
78 |
+
while True:
|
79 |
+
# 获取用户输入
|
80 |
+
user_input = input("User: ")
|
81 |
+
|
82 |
+
# 将用户输入添加到对话中
|
83 |
+
messages.append({"role": "user", "content": user_input})
|
84 |
+
|
85 |
+
# 准备输入文本
|
86 |
+
text = tokenizer.apply_chat_template(
|
87 |
+
messages,
|
88 |
+
tokenize=False,
|
89 |
+
add_generation_prompt=True
|
90 |
+
)
|
91 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(device)
|
92 |
+
|
93 |
+
# 生成响应
|
94 |
+
generated_ids = model.generate(
|
95 |
+
model_inputs.input_ids,
|
96 |
+
max_new_tokens=512
|
97 |
+
)
|
98 |
+
generated_ids = [
|
99 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
100 |
+
]
|
101 |
+
|
102 |
+
# 解码并打印响应
|
103 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
104 |
+
print(f"Assistant: {response}")
|
105 |
+
|
106 |
+
# 将生成的响应添加到对话中
|
107 |
+
messages.append({"role": "assistant", "content": response})
|
108 |
+
```
|
109 |
+
|
110 |
+
### 流式响应
|
111 |
+
|
112 |
+
对于需要流式响应的应用,使用以下代码:
|
113 |
+
|
114 |
+
```python
|
115 |
+
import torch
|
116 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
117 |
+
from transformers.trainer_utils import set_seed
|
118 |
+
from threading import Thread
|
119 |
+
import random
|
120 |
+
import os
|
121 |
+
|
122 |
+
DEFAULT_CKPT_PATH = os.path.dirname(os.path.abspath(__file__))
|
123 |
+
|
124 |
+
def _load_model_tokenizer(checkpoint_path, cpu_only):
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint_path, resume_download=True)
|
126 |
+
|
127 |
+
device_map = "cpu" if cpu_only else "auto"
|
128 |
+
|
129 |
+
model = AutoModelForCausalLM.from_pretrained(
|
130 |
+
checkpoint_path,
|
131 |
+
torch_dtype="auto",
|
132 |
+
device_map=device_map,
|
133 |
+
resume_download=True,
|
134 |
+
).eval()
|
135 |
+
model.generation_config.max_new_tokens = 512 # For chat.
|
136 |
+
|
137 |
+
return model, tokenizer
|
138 |
+
|
139 |
+
def _get_input() -> str:
|
140 |
+
while True:
|
141 |
+
try:
|
142 |
+
message = input('User: ').strip()
|
143 |
+
except UnicodeDecodeError:
|
144 |
+
print('[ERROR] Encoding error in input')
|
145 |
+
continue
|
146 |
+
except KeyboardInterrupt:
|
147 |
+
exit(1)
|
148 |
+
if message:
|
149 |
+
return message
|
150 |
+
print('[ERROR] Query is empty')
|
151 |
+
|
152 |
+
def _chat_stream(model, tokenizer, query, history):
|
153 |
+
conversation = [
|
154 |
+
{'role': 'system', 'content': ''},
|
155 |
+
]
|
156 |
+
for query_h, response_h in history:
|
157 |
+
conversation.append({'role': 'user', 'content': query_h})
|
158 |
+
conversation.append({'role': 'assistant', 'content': response_h})
|
159 |
+
conversation.append({'role': 'user', 'content': query})
|
160 |
+
inputs = tokenizer.apply_chat_template(
|
161 |
+
conversation,
|
162 |
+
add_generation_prompt=True,
|
163 |
+
return_tensors='pt',
|
164 |
+
)
|
165 |
+
inputs = inputs.to(model.device)
|
166 |
+
streamer = TextIteratorStreamer(tokenizer=tokenizer, skip_prompt=True, timeout=60.0, skip_special_tokens=True)
|
167 |
+
generation_kwargs = dict(
|
168 |
+
input_ids=inputs,
|
169 |
+
streamer=streamer,
|
170 |
+
)
|
171 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
172 |
+
thread.start()
|
173 |
+
|
174 |
+
for new_text in streamer:
|
175 |
+
yield new_text
|
176 |
+
|
177 |
+
def main():
|
178 |
+
checkpoint_path = DEFAULT_CKPT_PATH
|
179 |
+
seed = random.randint(0, 2**32 - 1) # 随机生成一个种子
|
180 |
+
set_seed(seed) # 设置随机种子
|
181 |
+
cpu_only = False
|
182 |
+
|
183 |
+
history = []
|
184 |
+
|
185 |
+
model, tokenizer = _load_model_tokenizer(checkpoint_path, cpu_only)
|
186 |
+
|
187 |
+
while True:
|
188 |
+
query = _get_input()
|
189 |
+
|
190 |
+
print(f"\nUser: {query}")
|
191 |
+
print(f"\nAssistant: ", end="")
|
192 |
+
try:
|
193 |
+
partial_text = ''
|
194 |
+
for new_text in _chat_stream(model, tokenizer, query, history):
|
195 |
+
print(new_text, end='', flush=True)
|
196 |
+
partial_text += new_text
|
197 |
+
print()
|
198 |
+
history.append((query, partial_text))
|
199 |
+
|
200 |
+
except KeyboardInterrupt:
|
201 |
+
print('Generation interrupted')
|
202 |
+
continue
|
203 |
+
|
204 |
+
if __name__ == "__main__":
|
205 |
+
main()
|
206 |
+
```
|
207 |
+
|
208 |
+
## 数据集
|
209 |
+
|
210 |
+
Qwen2-Boundless 模型使用了特殊的 `bad_data.json` 数据集进行微调,该数据集包含了广泛的文本内容,涵盖道德、法律、色情及暴力等主题。由于微调数据集全部为中文,因此模型在处理中文时表现更佳。如果你有兴趣了解或使用该数据集,可以通过以下链接获取:
|
211 |
+
|
212 |
+
- [bad_data.json 数据集](https://huggingface.co/datasets/ystemsrx/bad_data.json)
|
213 |
+
|
214 |
+
## GitHub 仓库
|
215 |
+
|
216 |
+
更多关于该模型的细节以及持续更新,请访问我们的 GitHub 仓库:
|
217 |
+
|
218 |
+
- [GitHub: ystemsrx/Qwen2-Boundless](https://github.com/ystemsrx/Qwen2-Boundless)
|
219 |
+
|
220 |
+
## 许可证
|
221 |
+
|
222 |
+
该模型和数据集根据 Apache 2.0 许可证开源,详细信息请参考 [LICENSE](https://github.com/ystemsrx/Qwen2-Boundless/blob/main/LICENSE) 文件。
|
223 |
+
|
224 |
+
## 声明
|
225 |
+
|
226 |
+
本模型提供的所有内容仅用于研究和测试目的,模型开发者不对任何可能的滥用行为负责。使用者应遵循相关法律法规,并承担因使用本模型而产生的所有责任。
|