yukseltron commited on
Commit
8c7ecd7
1 Parent(s): 9015aef

modify json input

Browse files
catboost_info/catboost_training.json CHANGED
@@ -1,104 +1,104 @@
1
  {
2
  "meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"MultiClass"}],"launch_mode":"Train","parameters":"","iteration_count":100,"learn_sets":["learn"],"name":"experiment"},
3
  "iterations":[
4
- {"learn":[0.8093705957],"iteration":0,"passed_time":0.2037998423,"remaining_time":20.17618439},
5
- {"learn":[0.7672922146],"iteration":1,"passed_time":0.3826700448,"remaining_time":18.75083219},
6
- {"learn":[0.7547201757],"iteration":2,"passed_time":0.5383328163,"remaining_time":17.40609439},
7
- {"learn":[0.7451655309],"iteration":3,"passed_time":0.7247860479,"remaining_time":17.39486515},
8
- {"learn":[0.74258066],"iteration":4,"passed_time":0.8744296379,"remaining_time":16.61416312},
9
- {"learn":[0.7348963069],"iteration":5,"passed_time":1.026646985,"remaining_time":16.0841361},
10
- {"learn":[0.7305562094],"iteration":6,"passed_time":1.179589168,"remaining_time":15.67168466},
11
- {"learn":[0.7265356209],"iteration":7,"passed_time":1.347566784,"remaining_time":15.49701802},
12
- {"learn":[0.7236361022],"iteration":8,"passed_time":1.508160513,"remaining_time":15.24917852},
13
- {"learn":[0.7214462449],"iteration":9,"passed_time":1.655532757,"remaining_time":14.89979481},
14
- {"learn":[0.7199267171],"iteration":10,"passed_time":1.803393051,"remaining_time":14.59108923},
15
- {"learn":[0.7176381223],"iteration":11,"passed_time":1.946488777,"remaining_time":14.27425103},
16
- {"learn":[0.7126307582],"iteration":12,"passed_time":2.129363329,"remaining_time":14.25035459},
17
- {"learn":[0.7106341005],"iteration":13,"passed_time":2.273315045,"remaining_time":13.96464957},
18
- {"learn":[0.708089894],"iteration":14,"passed_time":2.421259603,"remaining_time":13.72047109},
19
- {"learn":[0.7062654231],"iteration":15,"passed_time":2.56766236,"remaining_time":13.48022739},
20
- {"learn":[0.7047084356],"iteration":16,"passed_time":2.710968954,"remaining_time":13.23590725},
21
- {"learn":[0.7034535432],"iteration":17,"passed_time":2.850173841,"remaining_time":12.98412528},
22
- {"learn":[0.6994372743],"iteration":18,"passed_time":3.011464138,"remaining_time":12.83834712},
23
- {"learn":[0.6973022131],"iteration":19,"passed_time":3.167611618,"remaining_time":12.67044647},
24
- {"learn":[0.6955342415],"iteration":20,"passed_time":3.316262765,"remaining_time":12.47546469},
25
- {"learn":[0.694220544],"iteration":21,"passed_time":3.456846877,"remaining_time":12.25609347},
26
- {"learn":[0.6924865817],"iteration":22,"passed_time":3.61738059,"remaining_time":12.1103611},
27
- {"learn":[0.6911943965],"iteration":23,"passed_time":3.762911392,"remaining_time":11.91588607},
28
- {"learn":[0.689440866],"iteration":24,"passed_time":3.910375046,"remaining_time":11.73112514},
29
- {"learn":[0.6876020287],"iteration":25,"passed_time":4.060887963,"remaining_time":11.55791189},
30
- {"learn":[0.6865187003],"iteration":26,"passed_time":4.203132386,"remaining_time":11.3640246},
31
- {"learn":[0.6854479168],"iteration":27,"passed_time":4.339316085,"remaining_time":11.15824136},
32
- {"learn":[0.684268993],"iteration":28,"passed_time":4.519041798,"remaining_time":11.06386095},
33
- {"learn":[0.6829424596],"iteration":29,"passed_time":4.660443989,"remaining_time":10.87436931},
34
- {"learn":[0.6816032958],"iteration":30,"passed_time":4.809887584,"remaining_time":10.70587882},
35
- {"learn":[0.6801754486],"iteration":31,"passed_time":4.942530399,"remaining_time":10.5028771},
36
- {"learn":[0.678293514],"iteration":32,"passed_time":5.106902817,"remaining_time":10.36856026},
37
- {"learn":[0.6776460329],"iteration":33,"passed_time":5.240920694,"remaining_time":10.17355194},
38
- {"learn":[0.6764592663],"iteration":34,"passed_time":5.393993318,"remaining_time":10.01741616},
39
- {"learn":[0.6753199683],"iteration":35,"passed_time":5.53998867,"remaining_time":9.848868746},
40
- {"learn":[0.6743207323],"iteration":36,"passed_time":5.694805041,"remaining_time":9.696559935},
41
- {"learn":[0.6735958623],"iteration":37,"passed_time":5.830007802,"remaining_time":9.512117993},
42
- {"learn":[0.6725859005],"iteration":38,"passed_time":5.97129155,"remaining_time":9.339712424},
43
- {"learn":[0.6713787854],"iteration":39,"passed_time":6.112143527,"remaining_time":9.168215291},
44
- {"learn":[0.6704214161],"iteration":40,"passed_time":6.252816422,"remaining_time":8.997955339},
45
- {"learn":[0.669515157],"iteration":41,"passed_time":6.40699366,"remaining_time":8.847753149},
46
- {"learn":[0.668514491],"iteration":42,"passed_time":6.567009054,"remaining_time":8.705105025},
47
- {"learn":[0.6672082962],"iteration":43,"passed_time":6.723203521,"remaining_time":8.556804481},
48
- {"learn":[0.6661076657],"iteration":44,"passed_time":6.889185845,"remaining_time":8.420116033},
49
- {"learn":[0.6652635966],"iteration":45,"passed_time":7.030357153,"remaining_time":8.253027963},
50
- {"learn":[0.6641843486],"iteration":46,"passed_time":7.195760956,"remaining_time":8.114368737},
51
- {"learn":[0.6631666312],"iteration":47,"passed_time":7.355853114,"remaining_time":7.968840874},
52
- {"learn":[0.661749352],"iteration":48,"passed_time":7.523654616,"remaining_time":7.830742559},
53
- {"learn":[0.660763127],"iteration":49,"passed_time":7.683106976,"remaining_time":7.683106976},
54
- {"learn":[0.6591692193],"iteration":50,"passed_time":7.856338821,"remaining_time":7.548247102},
55
- {"learn":[0.6581610862],"iteration":51,"passed_time":7.99950856,"remaining_time":7.384161748},
56
- {"learn":[0.6572886455],"iteration":52,"passed_time":8.163041988,"remaining_time":7.238924027},
57
- {"learn":[0.6561826198],"iteration":53,"passed_time":8.333920305,"remaining_time":7.099265445},
58
- {"learn":[0.6553215345],"iteration":54,"passed_time":8.472373833,"remaining_time":6.931942227},
59
- {"learn":[0.6548207326],"iteration":55,"passed_time":8.605050601,"remaining_time":6.761111187},
60
- {"learn":[0.6537602239],"iteration":56,"passed_time":8.750383113,"remaining_time":6.601166208},
61
- {"learn":[0.6527693841],"iteration":57,"passed_time":8.892198559,"remaining_time":6.439178267},
62
- {"learn":[0.6519938054],"iteration":58,"passed_time":9.047986062,"remaining_time":6.287583535},
63
- {"learn":[0.6512436197],"iteration":59,"passed_time":9.183744244,"remaining_time":6.122496163},
64
- {"learn":[0.650687857],"iteration":60,"passed_time":9.334862114,"remaining_time":5.968190532},
65
- {"learn":[0.649806812],"iteration":61,"passed_time":9.468080322,"remaining_time":5.803016971},
66
- {"learn":[0.649136969],"iteration":62,"passed_time":9.610114622,"remaining_time":5.644035572},
67
- {"learn":[0.6482225012],"iteration":63,"passed_time":9.749086706,"remaining_time":5.483861272},
68
- {"learn":[0.6475584421],"iteration":64,"passed_time":9.889699251,"remaining_time":5.325222673},
69
- {"learn":[0.646424677],"iteration":65,"passed_time":10.02760251,"remaining_time":5.165734625},
70
- {"learn":[0.6458628932],"iteration":66,"passed_time":10.16813419,"remaining_time":5.008185498},
71
- {"learn":[0.6450314803],"iteration":67,"passed_time":10.30705858,"remaining_time":4.850380508},
72
- {"learn":[0.6442996338],"iteration":68,"passed_time":10.45008607,"remaining_time":4.694966206},
73
- {"learn":[0.6437052777],"iteration":69,"passed_time":10.59464677,"remaining_time":4.540562901},
74
- {"learn":[0.6430089366],"iteration":70,"passed_time":10.73544838,"remaining_time":4.384901449},
75
- {"learn":[0.642453701],"iteration":71,"passed_time":10.86850344,"remaining_time":4.226640228},
76
- {"learn":[0.641534076],"iteration":72,"passed_time":11.01326403,"remaining_time":4.073399024},
77
- {"learn":[0.6406980233],"iteration":73,"passed_time":11.15351919,"remaining_time":3.918804039},
78
- {"learn":[0.6393859282],"iteration":74,"passed_time":11.30742485,"remaining_time":3.769141617},
79
- {"learn":[0.6385404645],"iteration":75,"passed_time":11.4483743,"remaining_time":3.615276094},
80
- {"learn":[0.6375529648],"iteration":76,"passed_time":11.62148424,"remaining_time":3.471352434},
81
- {"learn":[0.6368774255],"iteration":77,"passed_time":11.75977784,"remaining_time":3.316860417},
82
- {"learn":[0.6358629196],"iteration":78,"passed_time":11.90671166,"remaining_time":3.165075251},
83
- {"learn":[0.6349938235],"iteration":79,"passed_time":12.04282933,"remaining_time":3.010707332},
84
- {"learn":[0.6342169638],"iteration":80,"passed_time":12.18568508,"remaining_time":2.858370575},
85
- {"learn":[0.6334373298],"iteration":81,"passed_time":12.31952131,"remaining_time":2.704285166},
86
- {"learn":[0.6327819068],"iteration":82,"passed_time":12.46399876,"remaining_time":2.552867215},
87
- {"learn":[0.6321170518],"iteration":83,"passed_time":12.60221223,"remaining_time":2.400421377},
88
- {"learn":[0.6315885506],"iteration":84,"passed_time":12.74419309,"remaining_time":2.248975251},
89
- {"learn":[0.6308169636],"iteration":85,"passed_time":12.88695573,"remaining_time":2.097876515},
90
- {"learn":[0.629908256],"iteration":86,"passed_time":13.04845554,"remaining_time":1.949769219},
91
- {"learn":[0.6294236747],"iteration":87,"passed_time":13.18311123,"remaining_time":1.797696986},
92
- {"learn":[0.6286204177],"iteration":88,"passed_time":13.32584777,"remaining_time":1.647014893},
93
- {"learn":[0.6277610572],"iteration":89,"passed_time":13.47489474,"remaining_time":1.497210526},
94
- {"learn":[0.6269985187],"iteration":90,"passed_time":13.6321176,"remaining_time":1.348231411},
95
- {"learn":[0.6257763607],"iteration":91,"passed_time":13.77283705,"remaining_time":1.197638004},
96
- {"learn":[0.6250042283],"iteration":92,"passed_time":13.91882286,"remaining_time":1.047653333},
97
- {"learn":[0.6238682689],"iteration":93,"passed_time":14.07857026,"remaining_time":0.8986321444},
98
- {"learn":[0.6232903582],"iteration":94,"passed_time":14.22267154,"remaining_time":0.7485616598},
99
- {"learn":[0.6221232309],"iteration":95,"passed_time":14.36003409,"remaining_time":0.5983347539},
100
- {"learn":[0.6214121653],"iteration":96,"passed_time":14.50195603,"remaining_time":0.4485141041},
101
- {"learn":[0.6205984833],"iteration":97,"passed_time":14.64237511,"remaining_time":0.2988239819},
102
- {"learn":[0.6196649498],"iteration":98,"passed_time":14.79488633,"remaining_time":0.1494432963},
103
- {"learn":[0.6192072422],"iteration":99,"passed_time":14.92552012,"remaining_time":0}
104
  ]}
 
1
  {
2
  "meta":{"test_sets":[],"test_metrics":[],"learn_metrics":[{"best_value":"Min","name":"MultiClass"}],"launch_mode":"Train","parameters":"","iteration_count":100,"learn_sets":["learn"],"name":"experiment"},
3
  "iterations":[
4
+ {"learn":[0.8093705957],"iteration":0,"passed_time":0.1989915005,"remaining_time":19.70015855},
5
+ {"learn":[0.7672922146],"iteration":1,"passed_time":0.37643102,"remaining_time":18.44511998},
6
+ {"learn":[0.7547201757],"iteration":2,"passed_time":0.5284701137,"remaining_time":17.08720034},
7
+ {"learn":[0.7451655309],"iteration":3,"passed_time":0.6942486303,"remaining_time":16.66196713},
8
+ {"learn":[0.74258066],"iteration":4,"passed_time":0.8441136605,"remaining_time":16.03815955},
9
+ {"learn":[0.7348963069],"iteration":5,"passed_time":0.9931482445,"remaining_time":15.5593225},
10
+ {"learn":[0.7305562094],"iteration":6,"passed_time":1.188812134,"remaining_time":15.79421835},
11
+ {"learn":[0.7265356209],"iteration":7,"passed_time":1.356216662,"remaining_time":15.59649161},
12
+ {"learn":[0.7236361022],"iteration":8,"passed_time":1.501796682,"remaining_time":15.18483312},
13
+ {"learn":[0.7214462449],"iteration":9,"passed_time":1.647051529,"remaining_time":14.82346376},
14
+ {"learn":[0.7199267171],"iteration":10,"passed_time":1.793843323,"remaining_time":14.51382325},
15
+ {"learn":[0.7176381223],"iteration":11,"passed_time":1.937629336,"remaining_time":14.2092818},
16
+ {"learn":[0.7126307582],"iteration":12,"passed_time":2.119149291,"remaining_time":14.1819991},
17
+ {"learn":[0.7106341005],"iteration":13,"passed_time":2.258630027,"remaining_time":13.8744416},
18
+ {"learn":[0.708089894],"iteration":14,"passed_time":2.402790361,"remaining_time":13.61581205},
19
+ {"learn":[0.7062654231],"iteration":15,"passed_time":2.54198242,"remaining_time":13.34540771},
20
+ {"learn":[0.7047084356],"iteration":16,"passed_time":2.685016291,"remaining_time":13.10919719},
21
+ {"learn":[0.7034535432],"iteration":17,"passed_time":2.82398036,"remaining_time":12.86479942},
22
+ {"learn":[0.6994372743],"iteration":18,"passed_time":2.989577282,"remaining_time":12.74503999},
23
+ {"learn":[0.6973022131],"iteration":19,"passed_time":3.159417343,"remaining_time":12.63766937},
24
+ {"learn":[0.6955342415],"iteration":20,"passed_time":3.324903776,"remaining_time":12.50797135},
25
+ {"learn":[0.694220544],"iteration":21,"passed_time":3.484451973,"remaining_time":12.35396609},
26
+ {"learn":[0.6924865817],"iteration":22,"passed_time":3.675603295,"remaining_time":12.30528059},
27
+ {"learn":[0.6911943965],"iteration":23,"passed_time":3.837223531,"remaining_time":12.15120785},
28
+ {"learn":[0.689440866],"iteration":24,"passed_time":3.999477327,"remaining_time":11.99843198},
29
+ {"learn":[0.6876020287],"iteration":25,"passed_time":4.155909213,"remaining_time":11.82835699},
30
+ {"learn":[0.6865187003],"iteration":26,"passed_time":4.297452144,"remaining_time":11.61903728},
31
+ {"learn":[0.6854479168],"iteration":27,"passed_time":4.432224674,"remaining_time":11.39714916},
32
+ {"learn":[0.684268993],"iteration":28,"passed_time":4.589191254,"remaining_time":11.23560617},
33
+ {"learn":[0.6829424596],"iteration":29,"passed_time":4.728063936,"remaining_time":11.03214918},
34
+ {"learn":[0.6816032958],"iteration":30,"passed_time":4.880687137,"remaining_time":10.86346492},
35
+ {"learn":[0.6801754486],"iteration":31,"passed_time":5.015112357,"remaining_time":10.65711376},
36
+ {"learn":[0.678293514],"iteration":32,"passed_time":5.183329767,"remaining_time":10.52373013},
37
+ {"learn":[0.6776460329],"iteration":33,"passed_time":5.319766011,"remaining_time":10.32660461},
38
+ {"learn":[0.6764592663],"iteration":34,"passed_time":5.471744046,"remaining_time":10.16181037},
39
+ {"learn":[0.6753199683],"iteration":35,"passed_time":5.61695256,"remaining_time":9.98569344},
40
+ {"learn":[0.6743207323],"iteration":36,"passed_time":5.773438333,"remaining_time":9.830449054},
41
+ {"learn":[0.6735958623],"iteration":37,"passed_time":5.908518527,"remaining_time":9.640214439},
42
+ {"learn":[0.6725859005],"iteration":38,"passed_time":6.053992515,"remaining_time":9.469065217},
43
+ {"learn":[0.6713787854],"iteration":39,"passed_time":6.197987163,"remaining_time":9.296980744},
44
+ {"learn":[0.6704214161],"iteration":40,"passed_time":6.339856981,"remaining_time":9.123208826},
45
+ {"learn":[0.669515157],"iteration":41,"passed_time":6.473833088,"remaining_time":8.940055217},
46
+ {"learn":[0.668514491],"iteration":42,"passed_time":6.622002986,"remaining_time":8.778003958},
47
+ {"learn":[0.6672082962],"iteration":43,"passed_time":6.774260427,"remaining_time":8.621785998},
48
+ {"learn":[0.6661076657],"iteration":44,"passed_time":6.939011936,"remaining_time":8.481014588},
49
+ {"learn":[0.6652635966],"iteration":45,"passed_time":7.084857371,"remaining_time":8.317006479},
50
+ {"learn":[0.6641843486],"iteration":46,"passed_time":7.236644075,"remaining_time":8.160470979},
51
+ {"learn":[0.6631666312],"iteration":47,"passed_time":7.383318753,"remaining_time":7.998595315},
52
+ {"learn":[0.661749352],"iteration":48,"passed_time":7.544445225,"remaining_time":7.852381765},
53
+ {"learn":[0.660763127],"iteration":49,"passed_time":7.701200204,"remaining_time":7.701200204},
54
+ {"learn":[0.6591692193],"iteration":50,"passed_time":7.865628731,"remaining_time":7.557172702},
55
+ {"learn":[0.6581610862],"iteration":51,"passed_time":8.007267804,"remaining_time":7.391324127},
56
+ {"learn":[0.6572886455],"iteration":52,"passed_time":8.155821776,"remaining_time":7.232521197},
57
+ {"learn":[0.6561826198],"iteration":53,"passed_time":8.31306633,"remaining_time":7.081500948},
58
+ {"learn":[0.6553215345],"iteration":54,"passed_time":8.453326822,"remaining_time":6.916358309},
59
+ {"learn":[0.6548207326],"iteration":55,"passed_time":8.592555669,"remaining_time":6.75129374},
60
+ {"learn":[0.6537602239],"iteration":56,"passed_time":8.74441362,"remaining_time":6.596662906},
61
+ {"learn":[0.6527693841],"iteration":57,"passed_time":8.882341967,"remaining_time":6.432040735},
62
+ {"learn":[0.6519938054],"iteration":58,"passed_time":9.032510586,"remaining_time":6.27682939},
63
+ {"learn":[0.6512436197],"iteration":59,"passed_time":9.165471777,"remaining_time":6.110314518},
64
+ {"learn":[0.650687857],"iteration":60,"passed_time":9.317946469,"remaining_time":5.957375611},
65
+ {"learn":[0.649806812],"iteration":61,"passed_time":9.454146334,"remaining_time":5.794476785},
66
+ {"learn":[0.649136969],"iteration":62,"passed_time":9.602231653,"remaining_time":5.639405892},
67
+ {"learn":[0.6482225012],"iteration":63,"passed_time":9.743334623,"remaining_time":5.480625726},
68
+ {"learn":[0.6475584421],"iteration":64,"passed_time":9.886505564,"remaining_time":5.323502996},
69
+ {"learn":[0.646424677],"iteration":65,"passed_time":10.02292322,"remaining_time":5.163324084},
70
+ {"learn":[0.6458628932],"iteration":66,"passed_time":10.16243775,"remaining_time":5.005379789},
71
+ {"learn":[0.6450314803],"iteration":67,"passed_time":10.30415792,"remaining_time":4.849015491},
72
+ {"learn":[0.6442996338],"iteration":68,"passed_time":10.44946457,"remaining_time":4.694686982},
73
+ {"learn":[0.6437052777],"iteration":69,"passed_time":10.59744533,"remaining_time":4.541762286},
74
+ {"learn":[0.6430089366],"iteration":70,"passed_time":10.73943836,"remaining_time":4.386531159},
75
+ {"learn":[0.642453701],"iteration":71,"passed_time":10.87796623,"remaining_time":4.2303202},
76
+ {"learn":[0.641534076],"iteration":72,"passed_time":11.03318399,"remaining_time":4.080766681},
77
+ {"learn":[0.6406980233],"iteration":73,"passed_time":11.17465893,"remaining_time":3.926231517},
78
+ {"learn":[0.6393859282],"iteration":74,"passed_time":11.32780489,"remaining_time":3.775934964},
79
+ {"learn":[0.6385404645],"iteration":75,"passed_time":11.46354943,"remaining_time":3.62006824},
80
+ {"learn":[0.6375529648],"iteration":76,"passed_time":11.63757066,"remaining_time":3.47615747},
81
+ {"learn":[0.6368774255],"iteration":77,"passed_time":11.77737363,"remaining_time":3.321823331},
82
+ {"learn":[0.6358629196],"iteration":78,"passed_time":11.92677076,"remaining_time":3.170407417},
83
+ {"learn":[0.6349938235],"iteration":79,"passed_time":12.06519754,"remaining_time":3.016299384},
84
+ {"learn":[0.6342169638],"iteration":80,"passed_time":12.21135697,"remaining_time":2.864392377},
85
+ {"learn":[0.6334373298],"iteration":81,"passed_time":12.35122974,"remaining_time":2.711245552},
86
+ {"learn":[0.6327819068],"iteration":82,"passed_time":12.49751298,"remaining_time":2.559731574},
87
+ {"learn":[0.6321170518],"iteration":83,"passed_time":12.63505483,"remaining_time":2.406677111},
88
+ {"learn":[0.6315885506],"iteration":84,"passed_time":12.78347118,"remaining_time":2.255906679},
89
+ {"learn":[0.6308169636],"iteration":85,"passed_time":12.92425865,"remaining_time":2.103949083},
90
+ {"learn":[0.629908256],"iteration":86,"passed_time":13.0857357,"remaining_time":1.955339817},
91
+ {"learn":[0.6294236747],"iteration":87,"passed_time":13.22657087,"remaining_time":1.803623301},
92
+ {"learn":[0.6286204177],"iteration":88,"passed_time":13.37238543,"remaining_time":1.652766739},
93
+ {"learn":[0.6277610572],"iteration":89,"passed_time":13.51996475,"remaining_time":1.502218306},
94
+ {"learn":[0.6269985187],"iteration":90,"passed_time":13.67769956,"remaining_time":1.352739517},
95
+ {"learn":[0.6257763607],"iteration":91,"passed_time":13.81838832,"remaining_time":1.201598985},
96
+ {"learn":[0.6250042283],"iteration":92,"passed_time":13.97058854,"remaining_time":1.051549675},
97
+ {"learn":[0.6238682689],"iteration":93,"passed_time":14.13136544,"remaining_time":0.9020020491},
98
+ {"learn":[0.6232903582],"iteration":94,"passed_time":14.27466874,"remaining_time":0.7512983545},
99
+ {"learn":[0.6221232309],"iteration":95,"passed_time":14.4111697,"remaining_time":0.6004654041},
100
+ {"learn":[0.6214121653],"iteration":96,"passed_time":14.55666323,"remaining_time":0.4502060791},
101
+ {"learn":[0.6205984833],"iteration":97,"passed_time":14.69350069,"remaining_time":0.2998673609},
102
+ {"learn":[0.6196649498],"iteration":98,"passed_time":14.85811315,"remaining_time":0.150081951},
103
+ {"learn":[0.6192072422],"iteration":99,"passed_time":14.99739511,"remaining_time":0}
104
  ]}
catboost_info/learn/events.out.tfevents CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:43e1a4e0506d6843c302e4578d8b742bbe971259d08d0a850b4871d6682e76ca
3
  size 5998
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb4a7aafbd3eb7e647c406a9716b6105873a453b74e6382be52d6577bf2ea87b
3
  size 5998
catboost_info/time_left.tsv CHANGED
@@ -1,101 +1,101 @@
1
  iter Passed Remaining
2
- 0 203 20176
3
- 1 382 18750
4
- 2 538 17406
5
- 3 724 17394
6
- 4 874 16614
7
- 5 1026 16084
8
- 6 1179 15671
9
- 7 1347 15497
10
- 8 1508 15249
11
- 9 1655 14899
12
- 10 1803 14591
13
- 11 1946 14274
14
- 12 2129 14250
15
- 13 2273 13964
16
- 14 2421 13720
17
- 15 2567 13480
18
- 16 2710 13235
19
- 17 2850 12984
20
- 18 3011 12838
21
- 19 3167 12670
22
- 20 3316 12475
23
- 21 3456 12256
24
- 22 3617 12110
25
- 23 3762 11915
26
- 24 3910 11731
27
- 25 4060 11557
28
- 26 4203 11364
29
- 27 4339 11158
30
- 28 4519 11063
31
- 29 4660 10874
32
- 30 4809 10705
33
- 31 4942 10502
34
- 32 5106 10368
35
- 33 5240 10173
36
- 34 5393 10017
37
- 35 5539 9848
38
- 36 5694 9696
39
- 37 5830 9512
40
- 38 5971 9339
41
- 39 6112 9168
42
- 40 6252 8997
43
- 41 6406 8847
44
- 42 6567 8705
45
- 43 6723 8556
46
- 44 6889 8420
47
- 45 7030 8253
48
- 46 7195 8114
49
- 47 7355 7968
50
- 48 7523 7830
51
- 49 7683 7683
52
- 50 7856 7548
53
- 51 7999 7384
54
- 52 8163 7238
55
- 53 8333 7099
56
- 54 8472 6931
57
- 55 8605 6761
58
- 56 8750 6601
59
- 57 8892 6439
60
- 58 9047 6287
61
- 59 9183 6122
62
- 60 9334 5968
63
- 61 9468 5803
64
- 62 9610 5644
65
- 63 9749 5483
66
- 64 9889 5325
67
- 65 10027 5165
68
- 66 10168 5008
69
- 67 10307 4850
70
- 68 10450 4694
71
- 69 10594 4540
72
- 70 10735 4384
73
- 71 10868 4226
74
- 72 11013 4073
75
- 73 11153 3918
76
- 74 11307 3769
77
- 75 11448 3615
78
- 76 11621 3471
79
- 77 11759 3316
80
- 78 11906 3165
81
- 79 12042 3010
82
- 80 12185 2858
83
- 81 12319 2704
84
- 82 12463 2552
85
- 83 12602 2400
86
- 84 12744 2248
87
- 85 12886 2097
88
- 86 13048 1949
89
- 87 13183 1797
90
- 88 13325 1647
91
- 89 13474 1497
92
- 90 13632 1348
93
- 91 13772 1197
94
- 92 13918 1047
95
- 93 14078 898
96
- 94 14222 748
97
- 95 14360 598
98
- 96 14501 448
99
- 97 14642 298
100
- 98 14794 149
101
- 99 14925 0
 
1
  iter Passed Remaining
2
+ 0 198 19700
3
+ 1 376 18445
4
+ 2 528 17087
5
+ 3 694 16661
6
+ 4 844 16038
7
+ 5 993 15559
8
+ 6 1188 15794
9
+ 7 1356 15596
10
+ 8 1501 15184
11
+ 9 1647 14823
12
+ 10 1793 14513
13
+ 11 1937 14209
14
+ 12 2119 14181
15
+ 13 2258 13874
16
+ 14 2402 13615
17
+ 15 2541 13345
18
+ 16 2685 13109
19
+ 17 2823 12864
20
+ 18 2989 12745
21
+ 19 3159 12637
22
+ 20 3324 12507
23
+ 21 3484 12353
24
+ 22 3675 12305
25
+ 23 3837 12151
26
+ 24 3999 11998
27
+ 25 4155 11828
28
+ 26 4297 11619
29
+ 27 4432 11397
30
+ 28 4589 11235
31
+ 29 4728 11032
32
+ 30 4880 10863
33
+ 31 5015 10657
34
+ 32 5183 10523
35
+ 33 5319 10326
36
+ 34 5471 10161
37
+ 35 5616 9985
38
+ 36 5773 9830
39
+ 37 5908 9640
40
+ 38 6053 9469
41
+ 39 6197 9296
42
+ 40 6339 9123
43
+ 41 6473 8940
44
+ 42 6622 8778
45
+ 43 6774 8621
46
+ 44 6939 8481
47
+ 45 7084 8317
48
+ 46 7236 8160
49
+ 47 7383 7998
50
+ 48 7544 7852
51
+ 49 7701 7701
52
+ 50 7865 7557
53
+ 51 8007 7391
54
+ 52 8155 7232
55
+ 53 8313 7081
56
+ 54 8453 6916
57
+ 55 8592 6751
58
+ 56 8744 6596
59
+ 57 8882 6432
60
+ 58 9032 6276
61
+ 59 9165 6110
62
+ 60 9317 5957
63
+ 61 9454 5794
64
+ 62 9602 5639
65
+ 63 9743 5480
66
+ 64 9886 5323
67
+ 65 10022 5163
68
+ 66 10162 5005
69
+ 67 10304 4849
70
+ 68 10449 4694
71
+ 69 10597 4541
72
+ 70 10739 4386
73
+ 71 10877 4230
74
+ 72 11033 4080
75
+ 73 11174 3926
76
+ 74 11327 3775
77
+ 75 11463 3620
78
+ 76 11637 3476
79
+ 77 11777 3321
80
+ 78 11926 3170
81
+ 79 12065 3016
82
+ 80 12211 2864
83
+ 81 12351 2711
84
+ 82 12497 2559
85
+ 83 12635 2406
86
+ 84 12783 2255
87
+ 85 12924 2103
88
+ 86 13085 1955
89
+ 87 13226 1803
90
+ 88 13372 1652
91
+ 89 13519 1502
92
+ 90 13677 1352
93
+ 91 13818 1201
94
+ 92 13970 1051
95
+ 93 14131 902
96
+ 94 14274 751
97
+ 95 14411 600
98
+ 96 14556 450
99
+ 97 14693 299
100
+ 98 14858 150
101
+ 99 14997 0
model.ipynb ADDED
@@ -0,0 +1,519 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "id": "5ede69a1",
6
+ "metadata": {},
7
+ "source": [
8
+ "# Classification Challenge using CatBoost\n",
9
+ "\n",
10
+ "## INF2179 Fall 2021\n",
11
+ "### Hamid Yuksel\n",
12
+ "\n",
13
+ "This submission uses [CatBoost](https://catboost.ai/).\n",
14
+ "CatBoost was chosen for its listed benefits, mainly in requiring less hyperparameter tuning and preprocessing of categorical and text features. It is also fast and fairly easy to set up.\n",
15
+ "\n",
16
+ "<img src=\"https://cdn.britannica.com/39/7139-050-A88818BB/Himalayan-chocolate-point.jpg\"\n",
17
+ " alt=\"Markdown Monster icon\"\n",
18
+ " style=\"float: left; margin-right: 10px;\" />\n"
19
+ ]
20
+ },
21
+ {
22
+ "cell_type": "code",
23
+ "execution_count": 1,
24
+ "id": "ee82451e",
25
+ "metadata": {},
26
+ "outputs": [
27
+ {
28
+ "name": "stdout",
29
+ "output_type": "stream",
30
+ "text": [
31
+ "Requirement already satisfied: catboost in /Users/yuksel/.local/lib/python3.8/site-packages (1.0.3)\n",
32
+ "Requirement already satisfied: numpy>=1.16.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from catboost) (1.20.1)\n",
33
+ "Requirement already satisfied: scipy in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from catboost) (1.8.0)\n",
34
+ "Requirement already satisfied: matplotlib in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from catboost) (3.4.3)\n",
35
+ "Requirement already satisfied: plotly in /Users/yuksel/.local/lib/python3.8/site-packages (from catboost) (5.3.1)\n",
36
+ "Requirement already satisfied: pandas>=0.24.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from catboost) (1.2.4)\n",
37
+ "Requirement already satisfied: graphviz in /Users/yuksel/.local/lib/python3.8/site-packages (from catboost) (0.18)\n",
38
+ "Requirement already satisfied: six in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from catboost) (1.15.0)\n",
39
+ "Requirement already satisfied: python-dateutil>=2.7.3 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from pandas>=0.24.0->catboost) (2.8.1)\n",
40
+ "Requirement already satisfied: pytz>=2017.3 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from pandas>=0.24.0->catboost) (2021.1)\n",
41
+ "Requirement already satisfied: pyparsing>=2.2.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from matplotlib->catboost) (2.4.7)\n",
42
+ "Requirement already satisfied: cycler>=0.10 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from matplotlib->catboost) (0.10.0)\n",
43
+ "Requirement already satisfied: pillow>=6.2.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from matplotlib->catboost) (8.2.0)\n",
44
+ "Requirement already satisfied: kiwisolver>=1.0.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from matplotlib->catboost) (1.3.1)\n",
45
+ "Requirement already satisfied: tenacity>=6.2.0 in /Users/yuksel/.local/lib/python3.8/site-packages (from plotly->catboost) (8.0.1)\n",
46
+ "\u001b[33mWARNING: You are using pip version 21.3.1; however, version 22.2.1 is available.\n",
47
+ "You should consider upgrading via the '/Users/yuksel/opt/anaconda3/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\n",
48
+ "Requirement already satisfied: ipywidgets in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (7.6.3)\n",
49
+ "Requirement already satisfied: traitlets>=4.3.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipywidgets) (5.0.5)\n",
50
+ "Requirement already satisfied: jupyterlab-widgets>=1.0.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipywidgets) (1.0.0)\n",
51
+ "Requirement already satisfied: ipykernel>=4.5.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipywidgets) (5.3.4)\n",
52
+ "Requirement already satisfied: ipython>=4.0.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipywidgets) (7.22.0)\n",
53
+ "Requirement already satisfied: nbformat>=4.2.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipywidgets) (5.1.3)\n",
54
+ "Requirement already satisfied: widgetsnbextension~=3.5.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipywidgets) (3.5.1)\n",
55
+ "Requirement already satisfied: tornado>=4.2 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipykernel>=4.5.1->ipywidgets) (6.1)\n",
56
+ "Requirement already satisfied: jupyter-client in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipykernel>=4.5.1->ipywidgets) (6.1.12)\n",
57
+ "Requirement already satisfied: appnope in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipykernel>=4.5.1->ipywidgets) (0.1.2)\n",
58
+ "Requirement already satisfied: pygments in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (2.8.1)\n",
59
+ "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (3.0.17)\n",
60
+ "Requirement already satisfied: setuptools>=18.5 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (52.0.0.post20210125)\n",
61
+ "Requirement already satisfied: backcall in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (0.2.0)\n",
62
+ "Requirement already satisfied: jedi>=0.16 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (0.17.2)\n",
63
+ "Requirement already satisfied: pexpect>4.3 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (4.8.0)\n",
64
+ "Requirement already satisfied: pickleshare in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (0.7.5)\n",
65
+ "Requirement already satisfied: decorator in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from ipython>=4.0.0->ipywidgets) (5.0.6)\n",
66
+ "Requirement already satisfied: ipython-genutils in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbformat>=4.2.0->ipywidgets) (0.2.0)\n",
67
+ "Requirement already satisfied: jupyter-core in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbformat>=4.2.0->ipywidgets) (4.7.1)\n",
68
+ "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbformat>=4.2.0->ipywidgets) (3.2.0)\n",
69
+ "Requirement already satisfied: notebook>=4.4.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from widgetsnbextension~=3.5.0->ipywidgets) (6.3.0)\n",
70
+ "Requirement already satisfied: parso<0.8.0,>=0.7.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from jedi>=0.16->ipython>=4.0.0->ipywidgets) (0.7.0)\n",
71
+ "Requirement already satisfied: six>=1.11.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets) (1.15.0)\n",
72
+ "Requirement already satisfied: attrs>=17.4.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets) (20.3.0)\n",
73
+ "Requirement already satisfied: pyrsistent>=0.14.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from jsonschema!=2.5.0,>=2.4->nbformat>=4.2.0->ipywidgets) (0.17.3)\n",
74
+ "Requirement already satisfied: nbconvert in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (6.0.7)\n",
75
+ "Requirement already satisfied: Send2Trash>=1.5.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.5.0)\n",
76
+ "Requirement already satisfied: pyzmq>=17 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (20.0.0)\n",
77
+ "Requirement already satisfied: terminado>=0.8.3 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.9.4)\n",
78
+ "Requirement already satisfied: argon2-cffi in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (20.1.0)\n",
79
+ "Requirement already satisfied: prometheus-client in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.10.1)\n",
80
+ "Requirement already satisfied: jinja2 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (2.11.3)\n",
81
+ "Requirement already satisfied: python-dateutil>=2.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from jupyter-client->ipykernel>=4.5.1->ipywidgets) (2.8.1)\n",
82
+ "Requirement already satisfied: ptyprocess>=0.5 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from pexpect>4.3->ipython>=4.0.0->ipywidgets) (0.7.0)\n",
83
+ "Requirement already satisfied: wcwidth in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=4.0.0->ipywidgets) (0.2.5)\n",
84
+ "Requirement already satisfied: cffi>=1.0.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.14.5)\n",
85
+ "Requirement already satisfied: MarkupSafe>=0.23 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from jinja2->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (2.0.1)\n",
86
+ "Requirement already satisfied: entrypoints>=0.2.2 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.3)\n",
87
+ "Requirement already satisfied: jupyterlab-pygments in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.1.2)\n",
88
+ "Requirement already satisfied: testpath in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.4.4)\n",
89
+ "Requirement already satisfied: defusedxml in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.7.1)\n",
90
+ "Requirement already satisfied: nbclient<0.6.0,>=0.5.0 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.5.3)\n",
91
+ "Requirement already satisfied: mistune<2,>=0.8.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.8.4)\n",
92
+ "Requirement already satisfied: pandocfilters>=1.4.1 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.4.3)\n",
93
+ "Requirement already satisfied: bleach in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (3.3.0)\n",
94
+ "Requirement already satisfied: pycparser in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from cffi>=1.0.0->argon2-cffi->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (2.20)\n"
95
+ ]
96
+ },
97
+ {
98
+ "name": "stdout",
99
+ "output_type": "stream",
100
+ "text": [
101
+ "Requirement already satisfied: async-generator in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.10)\n",
102
+ "Requirement already satisfied: nest-asyncio in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from nbclient<0.6.0,>=0.5.0->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (1.5.1)\n",
103
+ "Requirement already satisfied: webencodings in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (0.5.1)\n",
104
+ "Requirement already satisfied: packaging in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (21.3)\n",
105
+ "Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /Users/yuksel/opt/anaconda3/lib/python3.8/site-packages (from packaging->bleach->nbconvert->notebook>=4.4.1->widgetsnbextension~=3.5.0->ipywidgets) (2.4.7)\n",
106
+ "\u001b[33mWARNING: You are using pip version 21.3.1; however, version 22.2.1 is available.\n",
107
+ "You should consider upgrading via the '/Users/yuksel/opt/anaconda3/bin/python3 -m pip install --upgrade pip' command.\u001b[0m\n",
108
+ "Enabling notebook extension jupyter-js-widgets/extension...\n",
109
+ " - Validating: \u001b[32mOK\u001b[0m\n"
110
+ ]
111
+ }
112
+ ],
113
+ "source": [
114
+ "#Installing and Importing required libraries\n",
115
+ "! pip3 install --user catboost\n",
116
+ "! pip3 install --user ipywidgets\n",
117
+ "! jupyter nbextension enable --py widgetsnbextension\n",
118
+ "\n",
119
+ "import pandas as pd \n",
120
+ "import numpy as np\n",
121
+ "from sklearn.neural_network import MLPClassifier\n",
122
+ "from sklearn.metrics import accuracy_score \n",
123
+ "from catboost import Pool, CatBoostClassifier"
124
+ ]
125
+ },
126
+ {
127
+ "cell_type": "code",
128
+ "execution_count": 2,
129
+ "id": "1853f85d",
130
+ "metadata": {},
131
+ "outputs": [
132
+ {
133
+ "data": {
134
+ "text/plain": [
135
+ "Rock 24486\n",
136
+ "Pop 16251\n",
137
+ "Hip Hop 9263\n",
138
+ "unknown 5000\n",
139
+ "Name: Genre, dtype: int64"
140
+ ]
141
+ },
142
+ "execution_count": 2,
143
+ "metadata": {},
144
+ "output_type": "execute_result"
145
+ }
146
+ ],
147
+ "source": [
148
+ "# Reading data\n",
149
+ "df = pd.read_csv('data.csv')\n",
150
+ "\n",
151
+ "# Splitting\n",
152
+ "training = df.head(50000)\n",
153
+ "holdout_set = training.sample(5000, random_state=1) # pick 5000 observations randomly\n",
154
+ "training = training.drop(holdout_set.index) # Remove holdout from training data\n",
155
+ "testing = df.tail(5000)\n",
156
+ "\n",
157
+ "#Looking at counts per genre\n",
158
+ "df['Genre'].value_counts()"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": 3,
164
+ "id": "f0a20f7a",
165
+ "metadata": {},
166
+ "outputs": [
167
+ {
168
+ "data": {
169
+ "text/html": [
170
+ "<div>\n",
171
+ "<style scoped>\n",
172
+ " .dataframe tbody tr th:only-of-type {\n",
173
+ " vertical-align: middle;\n",
174
+ " }\n",
175
+ "\n",
176
+ " .dataframe tbody tr th {\n",
177
+ " vertical-align: top;\n",
178
+ " }\n",
179
+ "\n",
180
+ " .dataframe thead th {\n",
181
+ " text-align: right;\n",
182
+ " }\n",
183
+ "</style>\n",
184
+ "<table border=\"1\" class=\"dataframe\">\n",
185
+ " <thead>\n",
186
+ " <tr style=\"text-align: right;\">\n",
187
+ " <th></th>\n",
188
+ " <th>Lyric</th>\n",
189
+ " </tr>\n",
190
+ " </thead>\n",
191
+ " <tbody>\n",
192
+ " <tr>\n",
193
+ " <th>50000</th>\n",
194
+ " <td>Feels so good,. Feels so good,. Feels so good ...</td>\n",
195
+ " </tr>\n",
196
+ " <tr>\n",
197
+ " <th>50001</th>\n",
198
+ " <td>Shadow of a doubt. I heard your heart,. you he...</td>\n",
199
+ " </tr>\n",
200
+ " <tr>\n",
201
+ " <th>50002</th>\n",
202
+ " <td>Slaves. Hebrews born to serve to the pharaoh. ...</td>\n",
203
+ " </tr>\n",
204
+ " <tr>\n",
205
+ " <th>50003</th>\n",
206
+ " <td>You've been picked and it's over. What's the c...</td>\n",
207
+ " </tr>\n",
208
+ " <tr>\n",
209
+ " <th>50004</th>\n",
210
+ " <td>Magic happens. But only if you are open to the...</td>\n",
211
+ " </tr>\n",
212
+ " <tr>\n",
213
+ " <th>...</th>\n",
214
+ " <td>...</td>\n",
215
+ " </tr>\n",
216
+ " <tr>\n",
217
+ " <th>54995</th>\n",
218
+ " <td>I can't believe what you did to me. Down on my...</td>\n",
219
+ " </tr>\n",
220
+ " <tr>\n",
221
+ " <th>54996</th>\n",
222
+ " <td>Have all the songs been written?. Have all the...</td>\n",
223
+ " </tr>\n",
224
+ " <tr>\n",
225
+ " <th>54997</th>\n",
226
+ " <td>Everything you do you do so right. The clothes...</td>\n",
227
+ " </tr>\n",
228
+ " <tr>\n",
229
+ " <th>54998</th>\n",
230
+ " <td>(trecho). (Rule Number Two. Understanding what...</td>\n",
231
+ " </tr>\n",
232
+ " <tr>\n",
233
+ " <th>54999</th>\n",
234
+ " <td>As fall rides off in the Sunset. I sweep the S...</td>\n",
235
+ " </tr>\n",
236
+ " </tbody>\n",
237
+ "</table>\n",
238
+ "<p>5000 rows × 1 columns</p>\n",
239
+ "</div>"
240
+ ],
241
+ "text/plain": [
242
+ " Lyric\n",
243
+ "50000 Feels so good,. Feels so good,. Feels so good ...\n",
244
+ "50001 Shadow of a doubt. I heard your heart,. you he...\n",
245
+ "50002 Slaves. Hebrews born to serve to the pharaoh. ...\n",
246
+ "50003 You've been picked and it's over. What's the c...\n",
247
+ "50004 Magic happens. But only if you are open to the...\n",
248
+ "... ...\n",
249
+ "54995 I can't believe what you did to me. Down on my...\n",
250
+ "54996 Have all the songs been written?. Have all the...\n",
251
+ "54997 Everything you do you do so right. The clothes...\n",
252
+ "54998 (trecho). (Rule Number Two. Understanding what...\n",
253
+ "54999 As fall rides off in the Sunset. I sweep the S...\n",
254
+ "\n",
255
+ "[5000 rows x 1 columns]"
256
+ ]
257
+ },
258
+ "execution_count": 3,
259
+ "metadata": {},
260
+ "output_type": "execute_result"
261
+ }
262
+ ],
263
+ "source": [
264
+ "# Splitting training/testing set to feature (X) and labels (y)\n",
265
+ "train_y = training.Genre\n",
266
+ "train_X = training.drop('Genre', axis=1)\n",
267
+ "\n",
268
+ "test_X = testing.drop('Genre', axis=1)\n",
269
+ "\n",
270
+ "test_X"
271
+ ]
272
+ },
273
+ {
274
+ "cell_type": "code",
275
+ "execution_count": 5,
276
+ "id": "1c8eb420",
277
+ "metadata": {},
278
+ "outputs": [
279
+ {
280
+ "name": "stdout",
281
+ "output_type": "stream",
282
+ "text": [
283
+ "0:\tlearn: 0.8093706\ttotal: 204ms\tremaining: 20.2s\n",
284
+ "1:\tlearn: 0.7672922\ttotal: 383ms\tremaining: 18.8s\n",
285
+ "2:\tlearn: 0.7547202\ttotal: 538ms\tremaining: 17.4s\n",
286
+ "3:\tlearn: 0.7451655\ttotal: 725ms\tremaining: 17.4s\n",
287
+ "4:\tlearn: 0.7425807\ttotal: 874ms\tremaining: 16.6s\n",
288
+ "5:\tlearn: 0.7348963\ttotal: 1.03s\tremaining: 16.1s\n",
289
+ "6:\tlearn: 0.7305562\ttotal: 1.18s\tremaining: 15.7s\n",
290
+ "7:\tlearn: 0.7265356\ttotal: 1.35s\tremaining: 15.5s\n",
291
+ "8:\tlearn: 0.7236361\ttotal: 1.51s\tremaining: 15.2s\n",
292
+ "9:\tlearn: 0.7214462\ttotal: 1.66s\tremaining: 14.9s\n",
293
+ "10:\tlearn: 0.7199267\ttotal: 1.8s\tremaining: 14.6s\n",
294
+ "11:\tlearn: 0.7176381\ttotal: 1.95s\tremaining: 14.3s\n",
295
+ "12:\tlearn: 0.7126308\ttotal: 2.13s\tremaining: 14.3s\n",
296
+ "13:\tlearn: 0.7106341\ttotal: 2.27s\tremaining: 14s\n",
297
+ "14:\tlearn: 0.7080899\ttotal: 2.42s\tremaining: 13.7s\n",
298
+ "15:\tlearn: 0.7062654\ttotal: 2.57s\tremaining: 13.5s\n",
299
+ "16:\tlearn: 0.7047084\ttotal: 2.71s\tremaining: 13.2s\n",
300
+ "17:\tlearn: 0.7034535\ttotal: 2.85s\tremaining: 13s\n",
301
+ "18:\tlearn: 0.6994373\ttotal: 3.01s\tremaining: 12.8s\n",
302
+ "19:\tlearn: 0.6973022\ttotal: 3.17s\tremaining: 12.7s\n",
303
+ "20:\tlearn: 0.6955342\ttotal: 3.32s\tremaining: 12.5s\n",
304
+ "21:\tlearn: 0.6942205\ttotal: 3.46s\tremaining: 12.3s\n",
305
+ "22:\tlearn: 0.6924866\ttotal: 3.62s\tremaining: 12.1s\n",
306
+ "23:\tlearn: 0.6911944\ttotal: 3.76s\tremaining: 11.9s\n",
307
+ "24:\tlearn: 0.6894409\ttotal: 3.91s\tremaining: 11.7s\n",
308
+ "25:\tlearn: 0.6876020\ttotal: 4.06s\tremaining: 11.6s\n",
309
+ "26:\tlearn: 0.6865187\ttotal: 4.2s\tremaining: 11.4s\n",
310
+ "27:\tlearn: 0.6854479\ttotal: 4.34s\tremaining: 11.2s\n",
311
+ "28:\tlearn: 0.6842690\ttotal: 4.52s\tremaining: 11.1s\n",
312
+ "29:\tlearn: 0.6829425\ttotal: 4.66s\tremaining: 10.9s\n",
313
+ "30:\tlearn: 0.6816033\ttotal: 4.81s\tremaining: 10.7s\n",
314
+ "31:\tlearn: 0.6801754\ttotal: 4.94s\tremaining: 10.5s\n",
315
+ "32:\tlearn: 0.6782935\ttotal: 5.11s\tremaining: 10.4s\n",
316
+ "33:\tlearn: 0.6776460\ttotal: 5.24s\tremaining: 10.2s\n",
317
+ "34:\tlearn: 0.6764593\ttotal: 5.39s\tremaining: 10s\n",
318
+ "35:\tlearn: 0.6753200\ttotal: 5.54s\tremaining: 9.85s\n",
319
+ "36:\tlearn: 0.6743207\ttotal: 5.69s\tremaining: 9.7s\n",
320
+ "37:\tlearn: 0.6735959\ttotal: 5.83s\tremaining: 9.51s\n",
321
+ "38:\tlearn: 0.6725859\ttotal: 5.97s\tremaining: 9.34s\n",
322
+ "39:\tlearn: 0.6713788\ttotal: 6.11s\tremaining: 9.17s\n",
323
+ "40:\tlearn: 0.6704214\ttotal: 6.25s\tremaining: 9s\n",
324
+ "41:\tlearn: 0.6695152\ttotal: 6.41s\tremaining: 8.85s\n",
325
+ "42:\tlearn: 0.6685145\ttotal: 6.57s\tremaining: 8.71s\n",
326
+ "43:\tlearn: 0.6672083\ttotal: 6.72s\tremaining: 8.56s\n",
327
+ "44:\tlearn: 0.6661077\ttotal: 6.89s\tremaining: 8.42s\n",
328
+ "45:\tlearn: 0.6652636\ttotal: 7.03s\tremaining: 8.25s\n",
329
+ "46:\tlearn: 0.6641843\ttotal: 7.2s\tremaining: 8.11s\n",
330
+ "47:\tlearn: 0.6631666\ttotal: 7.36s\tremaining: 7.97s\n",
331
+ "48:\tlearn: 0.6617494\ttotal: 7.52s\tremaining: 7.83s\n",
332
+ "49:\tlearn: 0.6607631\ttotal: 7.68s\tremaining: 7.68s\n",
333
+ "50:\tlearn: 0.6591692\ttotal: 7.86s\tremaining: 7.55s\n",
334
+ "51:\tlearn: 0.6581611\ttotal: 8s\tremaining: 7.38s\n",
335
+ "52:\tlearn: 0.6572886\ttotal: 8.16s\tremaining: 7.24s\n",
336
+ "53:\tlearn: 0.6561826\ttotal: 8.33s\tremaining: 7.1s\n",
337
+ "54:\tlearn: 0.6553215\ttotal: 8.47s\tremaining: 6.93s\n",
338
+ "55:\tlearn: 0.6548207\ttotal: 8.61s\tremaining: 6.76s\n",
339
+ "56:\tlearn: 0.6537602\ttotal: 8.75s\tremaining: 6.6s\n",
340
+ "57:\tlearn: 0.6527694\ttotal: 8.89s\tremaining: 6.44s\n",
341
+ "58:\tlearn: 0.6519938\ttotal: 9.05s\tremaining: 6.29s\n",
342
+ "59:\tlearn: 0.6512436\ttotal: 9.18s\tremaining: 6.12s\n",
343
+ "60:\tlearn: 0.6506879\ttotal: 9.33s\tremaining: 5.97s\n",
344
+ "61:\tlearn: 0.6498068\ttotal: 9.47s\tremaining: 5.8s\n",
345
+ "62:\tlearn: 0.6491370\ttotal: 9.61s\tremaining: 5.64s\n",
346
+ "63:\tlearn: 0.6482225\ttotal: 9.75s\tremaining: 5.48s\n",
347
+ "64:\tlearn: 0.6475584\ttotal: 9.89s\tremaining: 5.33s\n",
348
+ "65:\tlearn: 0.6464247\ttotal: 10s\tremaining: 5.17s\n",
349
+ "66:\tlearn: 0.6458629\ttotal: 10.2s\tremaining: 5.01s\n",
350
+ "67:\tlearn: 0.6450315\ttotal: 10.3s\tremaining: 4.85s\n",
351
+ "68:\tlearn: 0.6442996\ttotal: 10.4s\tremaining: 4.69s\n",
352
+ "69:\tlearn: 0.6437053\ttotal: 10.6s\tremaining: 4.54s\n",
353
+ "70:\tlearn: 0.6430089\ttotal: 10.7s\tremaining: 4.38s\n",
354
+ "71:\tlearn: 0.6424537\ttotal: 10.9s\tremaining: 4.23s\n",
355
+ "72:\tlearn: 0.6415341\ttotal: 11s\tremaining: 4.07s\n",
356
+ "73:\tlearn: 0.6406980\ttotal: 11.2s\tremaining: 3.92s\n",
357
+ "74:\tlearn: 0.6393859\ttotal: 11.3s\tremaining: 3.77s\n",
358
+ "75:\tlearn: 0.6385405\ttotal: 11.4s\tremaining: 3.62s\n",
359
+ "76:\tlearn: 0.6375530\ttotal: 11.6s\tremaining: 3.47s\n",
360
+ "77:\tlearn: 0.6368774\ttotal: 11.8s\tremaining: 3.32s\n",
361
+ "78:\tlearn: 0.6358629\ttotal: 11.9s\tremaining: 3.17s\n",
362
+ "79:\tlearn: 0.6349938\ttotal: 12s\tremaining: 3.01s\n",
363
+ "80:\tlearn: 0.6342170\ttotal: 12.2s\tremaining: 2.86s\n",
364
+ "81:\tlearn: 0.6334373\ttotal: 12.3s\tremaining: 2.7s\n",
365
+ "82:\tlearn: 0.6327819\ttotal: 12.5s\tremaining: 2.55s\n",
366
+ "83:\tlearn: 0.6321171\ttotal: 12.6s\tremaining: 2.4s\n",
367
+ "84:\tlearn: 0.6315886\ttotal: 12.7s\tremaining: 2.25s\n",
368
+ "85:\tlearn: 0.6308170\ttotal: 12.9s\tremaining: 2.1s\n",
369
+ "86:\tlearn: 0.6299083\ttotal: 13s\tremaining: 1.95s\n",
370
+ "87:\tlearn: 0.6294237\ttotal: 13.2s\tremaining: 1.8s\n",
371
+ "88:\tlearn: 0.6286204\ttotal: 13.3s\tremaining: 1.65s\n",
372
+ "89:\tlearn: 0.6277611\ttotal: 13.5s\tremaining: 1.5s\n",
373
+ "90:\tlearn: 0.6269985\ttotal: 13.6s\tremaining: 1.35s\n",
374
+ "91:\tlearn: 0.6257764\ttotal: 13.8s\tremaining: 1.2s\n",
375
+ "92:\tlearn: 0.6250042\ttotal: 13.9s\tremaining: 1.05s\n",
376
+ "93:\tlearn: 0.6238683\ttotal: 14.1s\tremaining: 899ms\n",
377
+ "94:\tlearn: 0.6232904\ttotal: 14.2s\tremaining: 749ms\n",
378
+ "95:\tlearn: 0.6221232\ttotal: 14.4s\tremaining: 598ms\n",
379
+ "96:\tlearn: 0.6214122\ttotal: 14.5s\tremaining: 449ms\n",
380
+ "97:\tlearn: 0.6205985\ttotal: 14.6s\tremaining: 299ms\n",
381
+ "98:\tlearn: 0.6196649\ttotal: 14.8s\tremaining: 149ms\n",
382
+ "99:\tlearn: 0.6192072\ttotal: 14.9s\tremaining: 0us\n"
383
+ ]
384
+ },
385
+ {
386
+ "data": {
387
+ "text/plain": [
388
+ "<catboost.core.CatBoostClassifier at 0x7fb6f45e2c70>"
389
+ ]
390
+ },
391
+ "execution_count": 5,
392
+ "metadata": {},
393
+ "output_type": "execute_result"
394
+ }
395
+ ],
396
+ "source": [
397
+ "# Build a classifier\n",
398
+ "text_features = ['Lyric']\n",
399
+ "\n",
400
+ "\n",
401
+ "train_dataset = Pool(data=train_X,\n",
402
+ " label=train_y,\n",
403
+ " text_features=text_features)\n",
404
+ "\n",
405
+ "model = CatBoostClassifier(iterations=100,\n",
406
+ " learning_rate=1,\n",
407
+ " depth=5,\n",
408
+ " loss_function='MultiClass')\n",
409
+ "\n",
410
+ "model.fit(train_dataset)"
411
+ ]
412
+ },
413
+ {
414
+ "cell_type": "code",
415
+ "execution_count": 6,
416
+ "id": "f770a8f2",
417
+ "metadata": {},
418
+ "outputs": [
419
+ {
420
+ "name": "stdout",
421
+ "output_type": "stream",
422
+ "text": [
423
+ "0.6796\n"
424
+ ]
425
+ }
426
+ ],
427
+ "source": [
428
+ "# Estimate accuracy\n",
429
+ "pred = model.predict(holdout_set.drop('Genre',axis=1))\n",
430
+ "estimated_accuracy = accuracy_score(holdout_set['Genre'], pred)\n",
431
+ "print(estimated_accuracy)\n",
432
+ "pd.Series(estimated_accuracy).to_csv('ea.csv', index=False, header=False)"
433
+ ]
434
+ },
435
+ {
436
+ "cell_type": "code",
437
+ "execution_count": 7,
438
+ "id": "035f58c6",
439
+ "metadata": {},
440
+ "outputs": [
441
+ {
442
+ "name": "stdout",
443
+ "output_type": "stream",
444
+ "text": [
445
+ "['Pop' 'Rock' 'Rock' ... 'Rock' 'Pop' 'Rock']\n"
446
+ ]
447
+ }
448
+ ],
449
+ "source": [
450
+ "# Predict testing set\n",
451
+ "pred = model.predict(test_X)\n",
452
+ "print(pred.flatten())\n",
453
+ "pred = pd.Series(pred.flatten()).to_csv('pred.csv', index=False, header=False)"
454
+ ]
455
+ },
456
+ {
457
+ "cell_type": "code",
458
+ "execution_count": 8,
459
+ "id": "2137c958",
460
+ "metadata": {},
461
+ "outputs": [
462
+ {
463
+ "data": {
464
+ "text/plain": [
465
+ "(array(['Hip Hop', 'Pop', 'Rock'], dtype=object), array([ 821, 1385, 2794]))"
466
+ ]
467
+ },
468
+ "execution_count": 8,
469
+ "metadata": {},
470
+ "output_type": "execute_result"
471
+ }
472
+ ],
473
+ "source": [
474
+ "# to check number of instances of each genre in pred\n",
475
+ "np.unique(model.predict(test_X), return_counts=True)"
476
+ ]
477
+ },
478
+ {
479
+ "cell_type": "code",
480
+ "execution_count": null,
481
+ "id": "83aa22c4",
482
+ "metadata": {},
483
+ "outputs": [],
484
+ "source": [
485
+ "import pickle\n",
486
+ "pickle.dump(model, open('model.pickle', 'wb'))"
487
+ ]
488
+ },
489
+ {
490
+ "cell_type": "code",
491
+ "execution_count": null,
492
+ "id": "8c3b136d",
493
+ "metadata": {},
494
+ "outputs": [],
495
+ "source": []
496
+ }
497
+ ],
498
+ "metadata": {
499
+ "kernelspec": {
500
+ "display_name": "Python 3",
501
+ "language": "python",
502
+ "name": "python3"
503
+ },
504
+ "language_info": {
505
+ "codemirror_mode": {
506
+ "name": "ipython",
507
+ "version": 3
508
+ },
509
+ "file_extension": ".py",
510
+ "mimetype": "text/x-python",
511
+ "name": "python",
512
+ "nbconvert_exporter": "python",
513
+ "pygments_lexer": "ipython3",
514
+ "version": "3.8.8"
515
+ }
516
+ },
517
+ "nbformat": 4,
518
+ "nbformat_minor": 5
519
+ }
model.pickle ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff004a32317f1ed907d7aa6960746578c802f2ffff4b586b7bc73e38dd95c49f
3
+ size 7738041
request.py CHANGED
@@ -1,10 +1,9 @@
1
  import requests
2
  import json
3
 
4
- url = 'https://lyrics-classifier.vercel.app/api/'
5
 
6
  data = [["baby you can drive my car"]]
7
- j_data = json.dumps(data)
8
  headers = {'content-type': 'application/json', 'Accept-Charset': 'UTF-8'}
9
- r = requests.post(url, data=j_data, headers=headers)
10
- print(r, r.text)
 
1
  import requests
2
  import json
3
 
4
+ url = 'http://0.0.0.0:5000/api/'
5
 
6
  data = [["baby you can drive my car"]]
 
7
  headers = {'content-type': 'application/json', 'Accept-Charset': 'UTF-8'}
8
+ r = requests.post(url, json={'lyric':data,}, headers=headers)
9
+ print(r, r.json())
server.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, redirect, url_for, flash, jsonify
2
+ import numpy as np
3
+ import pickle as p
4
+ import json
5
+
6
+
7
+ app = Flask(__name__)
8
+
9
+ @app.route("/")
10
+ def home():
11
+ return "<h1>Lyrics Classifier</h1>"
12
+
13
+ @app.route('/api/', methods=['POST'])
14
+ def makecalc():
15
+ data = request.get_json(force=True)
16
+ prediction = np.array2string(model.predict(data['lyric']))
17
+ print(prediction)
18
+ return jsonify(prediction)
19
+
20
+
21
+ if __name__ == '__main__':
22
+ modelfile = 'model.pickle'
23
+ model = p.load(open(modelfile, 'rb'))
24
+ app.run(debug=True, host='0.0.0.0')
vercel.json CHANGED
@@ -2,7 +2,7 @@
2
  "version": 2,
3
  "builds": [
4
  {
5
- "src": "./index.py",
6
  "use": "@vercel/python"
7
  }
8
  ],
 
2
  "version": 2,
3
  "builds": [
4
  {
5
+ "src": "./server.py",
6
  "use": "@vercel/python"
7
  }
8
  ],