File size: 7,362 Bytes
3fcb9c5
3fc9281
3fcb9c5
f67a52a
3fcb9c5
 
fb7aff2
 
 
 
3fcb9c5
0781fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f09ec43
0781fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c522049
f67a52a
 
9127336
 
f67a52a
 
 
 
 
44a02ef
 
6957904
 
0781fda
 
 
 
 
3fcb9c5
d9f7080
7f224e1
 
d9f7080
955192f
 
 
7f224e1
0781fda
 
7f224e1
 
2f5fb94
955192f
 
7f224e1
955192f
7f224e1
955192f
d46f929
 
 
7f224e1
955192f
 
 
7f224e1
 
 
 
 
 
 
 
 
6dfc194
 
 
 
 
 
7f224e1
6dfc194
7f224e1
6dfc194
7f224e1
6dfc194
7f224e1
 
 
 
 
d46f929
 
7f224e1
 
 
 
a7890f1
 
 
7f224e1
a7890f1
 
 
 
 
 
7f224e1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
---
# base_model: owkin/phikon
tags:
- feature-extraction
- image-classification
- timm
- biology
- cancer
- owkin
- histology
library_name: timm
model-index:
- name: owkin_pancancer
  results:
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: Camelyon16[Meta]
      type: image-classification
    metrics:
    - type: accuracy
      value: 94.5 ± 4.4
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-BRCA[Hist]
      type: image-classification
    metrics:
    - type: accuracy
      value: 96.2 ± 3.3
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-BRCA[HRD]
      type: image-classification
    metrics:
    - type: accuracy
      value: 79.3 ± 2.4
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-BRCA[Mol]
      type: image-classification
    metrics:
    - type: accuracy
      value: 81.7 ± 1.6
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-BRCA[OS]
      type: image-classification
    metrics:
    - type: accuracy
      value: 64.7 ± 5.7
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-CRC[MSI]
      type: image-classification
    metrics:
    - type: accuracy
      value: 91.0 ± 2.2
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-COAD[OS]
      type: image-classification
    metrics:
    - type: accuracy
      value: 63.4 ± 7.4
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-NSCLC[CType]
      type: image-classification
    metrics:
    - type: accuracy
      value: 97.7 ± 1.3
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-LUAD[OS]
      type: image-classification
    metrics:
    - type: accuracy
      value: 53.8 ± 4.5
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-LUSC[OS]
      type: image-classification
    metrics:
    - type: accuracy
      value: 62.2 ± 2.9
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-OV[HRD]
      type: image-classification
    metrics:
    - type: accuracy
      value: 74.2 ± 8.6
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-RCC[CType]
      type: image-classification
    metrics:
    - type: accuracy
      value: 99.5 ± 0.2
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-STAD[MSI]
      type: image-classification
    metrics:
    - type: accuracy
      value: 89.9 ± 3.9
      name: ROC AUC
      verified: false
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: TCGA-PAAD[OS]
      type: image-classification
    metrics:
    - type: accuracy
      value: 59.2 ± 4.1
      name: ROC AUC
      verified: false
widget:
- src: https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif
  example_title: pancancer tile
co2_eq_emissions:
  emissions: 14590
  source: https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2
  training_type: pre-training
  geographical_location: Jean Zay cluster, France (~40 gCO₂eq/kWh)
  hardware_used: 32 V100 32Gb GPUs, 1216 GPU hours
license: other
license_name: owkin-non-commercial
license_link: https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt
pipeline_tag: feature-extraction
inference: false
datasets:
- owkin/camelyon16-features
- owkin/nct-crc-he
metrics:
- roc_auc
---

# Model card for vit_base_patch16_224.owkin_pancancer

A Vision Transformer (ViT) image classification model. \
Trained by Owkin on 40 million pan-cancer histology tiles from TCGA-COAD.

A version using the transformers library is also available here: https://huggingface.co/owkin/phikon

![](https://github.com/owkin/HistoSSLscaling/blob/main/assets/main_figure.png?raw=true)

## Model Details

- **Model Type:** Feature backbone
- **Developed by**: Owkin
- **Funded by**: Owkin and IDRIS
- **Model Stats:**
  - Params: 85.8M (base)
  - Image size: 224 x 224 x 3
  - Patch size: 16 x 16 x 3
- **Pre-training:**
  - Dataset: Pancancer40M, created from [TCGA-COAD](https://portal.gdc.cancer.gov/repository?facetTab=cases&filters=%7B%22content%22%3A%5B%7B%22content%22%3A%7B%22field%22%3A%22cases.project.project_id%22%2C%22value%22%3A%5B%22TCGA-COAD%22%5D%7D%2C%22op%22%3A%22in%22%7D%2C%7B%22content%22%3A%7B%22field%22%3A%22files.experimental_strategy%22%2C%22value%22%3A%5B%22Diagnostic%20Slide%22%5D%7D%2C%22op%22%3A%22in%22%7D%5D%2C%22op%22%3A%22and%22%7D&searchTableTab=cases)
  - Framework: [iBOT](https://github.com/bytedance/ibot), self-supervised, masked image modeling, self-distillation
- **Papers:**
  - [Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling](https://www.medrxiv.org/content/10.1101/2023.07.21.23292757v2)
- **Original:** https://github.com/owkin/HistoSSLscaling
- **License:** [Owkin non-commercial license](https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt)

## Model Usage

### Image Embeddings
```python
from urllib.request import urlopen
from PIL import Image
import timm

# get example histology image
img = Image.open(
  urlopen(
    "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif"
  )
)

# load model from the hub
model = timm.create_model(
  model_name="hf-hub:1aurent/vit_base_patch16_224.owkin_pancancer",
  pretrained=True,
).eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
output = model(data)  # output is a (batch_size, num_features) shaped tensor
```

## Citation
```bibtex
@article{Filiot2023.07.21.23292757,
  author       = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
  title        = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
  elocation-id = {2023.07.21.23292757},
  year         = {2023},
  doi          = {10.1101/2023.07.21.23292757},
  publisher    = {Cold Spring Harbor Laboratory Press},
  url          = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757},
  eprint       = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf},
  journal      = {medRxiv}
}
```