Edit model card

beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled-3rd

This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0488
  • Accuracy: 0.9901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.9
  • num_epochs: 12

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9835 1.0 114 1.9296 0.2315
1.6045 2.0 229 1.4334 0.5172
1.0525 3.0 343 0.9298 0.6962
0.795 4.0 458 0.6580 0.7709
0.5739 5.0 572 0.4717 0.8366
0.5821 6.0 687 0.3511 0.8851
0.4566 7.0 801 0.2705 0.9204
0.2751 8.0 916 0.2114 0.9384
0.2352 9.0 1030 0.1303 0.9688
0.1831 10.0 1145 0.1194 0.9688
0.1515 11.0 1259 0.0673 0.9869
0.204 11.95 1368 0.0488 0.9901

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ALM-AHME/beit-large-patch16-224-finetuned-Lesion-Classification-HAM10000-AH-60-20-20-Shuffled-3rd

Finetuned
(95)
this model