distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5043
- Accuracy: {'accuracy': 0.9479166666666666}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 431 | 0.2331 | {'accuracy': 0.90625} |
0.4451 | 2.0 | 862 | 0.3140 | {'accuracy': 0.90625} |
0.2963 | 3.0 | 1293 | 0.3216 | {'accuracy': 0.9322916666666666} |
0.25 | 4.0 | 1724 | 0.2690 | {'accuracy': 0.9270833333333334} |
0.2261 | 5.0 | 2155 | 0.2707 | {'accuracy': 0.9479166666666666} |
0.1511 | 6.0 | 2586 | 0.2543 | {'accuracy': 0.9427083333333334} |
0.1401 | 7.0 | 3017 | 0.3120 | {'accuracy': 0.9375} |
0.1401 | 8.0 | 3448 | 0.2845 | {'accuracy': 0.953125} |
0.086 | 9.0 | 3879 | 0.4018 | {'accuracy': 0.921875} |
0.0583 | 10.0 | 4310 | 0.4593 | {'accuracy': 0.9427083333333334} |
0.0475 | 11.0 | 4741 | 0.4401 | {'accuracy': 0.953125} |
0.0515 | 12.0 | 5172 | 0.4631 | {'accuracy': 0.9479166666666666} |
0.0291 | 13.0 | 5603 | 0.4593 | {'accuracy': 0.9479166666666666} |
0.0319 | 14.0 | 6034 | 0.5292 | {'accuracy': 0.9479166666666666} |
0.0319 | 15.0 | 6465 | 0.5043 | {'accuracy': 0.9479166666666666} |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.4.1+cu124
- Datasets 3.0.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for Advince/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased