Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: Afterparty-hf/pretrain-0.924
load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: Afterparty-hf/synthetic-instruct
    type: sharegpt


  - path: Afterparty-hf/train-format-server
    type: sharegpt


  - path: Afterparty-hf/help-channels-formatted
    type: sharegpt


  - path: Afterparty-hf/constt-augmented
    type: sharegpt


  - path: Afterparty-hf/transcripts-train
    type: sharegpt


chat_template: chatml
dataset_prepared_path: ./prepath
hub_model_id: Afterparty-hf/finetune-0.559
wandb_project: ap_publi
hf_use_auth_token: true


output_dir: ./finetune-559-a
resume_from_checkpoint: ./finetune-559/checkpoint-1026
wandb_watch: all
hub_private_repo: true
hub_strategy: all_checkpoints
push_to_hub: false
hf_use_auth_token: true
max_grad_norm: 0.6
sequence_len: 14256
sample_packing: true
pad_to_sequence_len: true
micro_batch_size: 1
gradient_accumulation_steps: 1
num_epochs: 4
learning_rate: 0.000004
optimizer: adamw_bnb_8bit
#optim_args:
 # amsgrad: true
lr_scheduler: cosine
train_on_inputs: false
group_by_length: false
bfloat16: false
#bf16: auto
fp16:
tf32: false
neftune_noise_alpha: 2
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
xformers_attention:
flash_attention: true
#unsloth_lora_mlp: true
#unsloth_lora_qkv: true
#unsloth_lora_o: true
#flash_attn_cross_entropy: true
#flash_attn_rms_norm: true
#flash_attn_fuse_qkv: false
#flash_attn_fuse_mlp: true
warmup_ratio: 0.5
evals_per_step: 0.025
eval_table_size:
saves_per_epoch: 5
debug:
torch_compile: true
rank:
deepspeed: deepspeed_configs/zero2.json
save_safetensors: true
weight_decay: 0.01
special_tokens:
   bos_token: "<s>"
   eos_token: "</s>"
   unk_token: "<unk>"
   pad_token: "</s>"
tokens: # these are delimiters
  - "<|im_start|>"
  - "<|im_end|>"

finetune-0.559

This model is a fine-tuned version of Afterparty-hf/pretrain-0.924 on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 8
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 310
  • num_epochs: 4

Training results

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
16
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Afterparty-hf/Finetune-test1

Finetuned
(1)
this model