metadata
language:
- ja
- en
tags:
- merge
- mergekit
- lazymergekit
- Rakuten/RakutenAI-7B-chat
- lightblue/karasu-7B-chat-plus-unleashed
base_model:
- Rakuten/RakutenAI-7B-chat
- lightblue/karasu-7B-chat-plus-unleashed
🍊 Neroli-Rak-Lig-slerp-7B
Neroli-Rak-Lig-slerp-7B is a merge of the following models using LazyMergekit of Maxime Labonne powered by MergeKit of Arcee AI:
💻 Configuration
slices:
- sources:
- model: Rakuten/RakutenAI-7B-chat
layer_range: [0, 32]
- model: lightblue/karasu-7B-chat-plus-unleashed
layer_range: [0, 32]
merge_method: slerp
base_model: Rakuten/RakutenAI-7B-chat
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
🤗 Usage for HuggingFace
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import pipeline
import torch
model_name = "AkimfromParis/Neroli-Rak-Lig-slerp-7B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, pad_token_id=tokenizer.eos_token_id)
messages = [
{"role": "system","content": "あなたは誠実で優秀な日本人のアシスタントです。以下のトピックに関する詳細な情報を提供してください。"},
{"role": "user", "content": "大谷翔平選手は誰ですか?"},
]
print(pipe(messages, max_new_tokens=256)[0]['generated_text'][-1])
🔖 Citation
@misc{goddard2024arcee,
title={Arcee's MergeKit: A Toolkit for Merging Large Language Models},
author={Goddard, Charles and Siriwardhana, Shamane and Ehghaghi, Malikeh and Meyers, Luke and Karpukhin, Vlad and Benedict, Brian and McQuade, Mark and Solawetz, Jacob},
journal={arXiv preprint arXiv:2403.13257},
year={2024}
}
arxiv.org/abs/2403.13257