Edit model card

Usage



from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

config = PeftConfig.from_pretrained("Ashishkr/llama2-qrecc-context-resolution")
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
model = PeftModel.from_pretrained(model, "Ashishkr/llama2-qrecc-context-resolution").to(device)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

def response_generate(
    model: AutoModelForCausalLM,
    tokenizer: AutoTokenizer,
    prompt: str,
    max_new_tokens: int = 128,
    temperature: float = 0.7,
):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    inputs = tokenizer(
        [prompt],
        return_tensors="pt",
        return_token_type_ids=False,
    ).to(
        device
    )

    with torch.autocast("cuda", dtype=torch.bfloat16):
        response = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            temperature=temperature,
            return_dict_in_generate=True,
            eos_token_id=tokenizer.eos_token_id,
            pad_token_id=tokenizer.pad_token_id,
        )

    decoded_output = tokenizer.decode(
        response["sequences"][0],
        skip_special_tokens=True,
    )

    return decoded_output

prompt = """ Strictly use the context provided, to generate the repsonse. No additional information to be added. Re-write the user query using the context . 
>>CONTEXT<<Where did jessica go to school? Where did she work at?>>USER<<What did she do next for work?>>REWRITE<<"""

response = response_generate(
    model,
    tokenizer,
    prompt,
    max_new_tokens=20,
    temperature=0.1,
)

print(response)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .