Edit model card

yelpreview_base

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("Ayomidedeji/yelpreview_base")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 98
  • Number of training documents: 10000
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 food - good - place - great - like 10 -1_food_good_place_great
0 mexican - tacos - salsa - burrito - food 3827 0_mexican_tacos_salsa_burrito
1 pizza - crust - pizzas - good - wait 705 1_pizza_crust_pizzas_good
2 bar - music - drinks - night - place 393 2_bar_music_drinks_night
3 burger - fries - burgers - good - like 288 3_burger_fries_burgers_good
4 ordered - just - bread - good - chicken 275 4_ordered_just_bread_good
5 sushi - roll - rolls - happy hour - happy 261 5_sushi_roll_rolls_happy hour
6 scottsdale - place - great - bar - food 191 6_scottsdale_place_great_bar
7 coffee - starbucks - coffee shop - shop - espresso 190 7_coffee_starbucks_coffee shop_shop
8 hotel - pool - room - stay - resort 186 8_hotel_pool_room_stay
9 minutes - table - server - asked - came 183 9_minutes_table_server_asked
10 chinese - chinese food - food - asian - china 145 10_chinese_chinese food_food_asian
11 thai - pad - curry - pad thai - thai food 131 11_thai_pad_curry_pad thai
12 beer - beers - peaks - brewery - craft 131 12_beer_beers_peaks_brewery
13 breakfast - eggs - pancakes - toast - french toast 115 13_breakfast_eggs_pancakes_toast
14 pho - vietnamese - spring rolls - spring - broth 104 14_pho_vietnamese_spring rolls_spring
15 bbq - brisket - ribs - sauce - pork 94 15_bbq_brisket_ribs_sauce
16 theater - movie - seats - movies - theaters 84 16_theater_movie_seats_movies
17 food - place - great - lunch - love 82 17_food_place_great_lunch
18 hair - cut - salon - haircut - barber 81 18_hair_cut_salon_haircut
19 great - valentine - food - patio - valentine day 78 19_great_valentine_food_patio
20 service - food - server - servers - food service 71 20_service_food_server_servers
21 clothes - shoes - store - nordstrom - pair 69 21_clothes_shoes_store_nordstrom
22 gym - classes - yoga - fitness - workout 67 22_gym_classes_yoga_fitness
23 phoenix - food - durant - restaurant - good 66 23_phoenix_food_durant_restaurant
24 italian - pasta - italian food - restaurant - best 65 24_italian_pasta_italian food_restaurant
25 sandwich - sandwiches - bread - sacks - al 64 25_sandwich_sandwiches_bread_sacks
26 airport - flight - terminal - sky harbor - harbor 64 26_airport_flight_terminal_sky harbor
27 yogurt - frozen yogurt - flavors - frozen - toppings 64 27_yogurt_frozen yogurt_flavors_frozen
28 nails - nail - manicure - pedicure - gel 62 28_nails_nail_manicure_pedicure
29 car - auto - warranty - repair - new 61 29_car_auto_warranty_repair
30 trail - hike - park - mountain - view 60 30_trail_hike_park_mountain
31 dr - doctor - office - care - doctors 58 31_dr_doctor_office_care
32 ice - ice cream - cream - flavors - custard 56 32_ice_ice cream_cream_flavors
33 cupcakes - cupcake - cake - frosting - sprinkles 54 33_cupcakes_cupcake_cake_frosting
34 wine - wines - total wine - daniel - bottle 51 34_wine_wines_total wine_daniel
35 vegan - vegetarian - meat - mock - green 45 35_vegan_vegetarian_meat_mock
36 stars - christopher - star - reason - pat 45 36_stars_christopher_star_reason
37 staff - love place - food - great - friendly 45 37_staff_love place_food_great
38 stadium - game - spring training - parking - spring 44 38_stadium_game_spring training_parking
39 sub - subway - subs - jimmy - sandwich 44 39_sub_subway_subs_jimmy
40 indian - indian food - buffet - india - masala 43 40_indian_indian food_buffet_india
41 museum - kids - art - exhibits - exhibit 40 41_museum_kids_art_exhibits
42 donuts - donut - dunkin - bosa - dunkin donuts 40 42_donuts_donut_dunkin_bosa
43 fez - yelp - yelp event - event - yoli 39 43_fez_yelp_yelp event_event
44 vet - dog - animals - pet - dogs 35 44_vet_dog_animals_pet
45 happy hour - happy - hour - great happy - great 35 45_happy hour_happy_hour_great happy
46 steak - steaks - steakhouse - good steak - sides 34 46_steak_steaks_steakhouse_good steak
47 mall - stores - malls - shopping - food court 33 47_mall_stores_malls_shopping
48 phone - store - iphone - camera - customer 33 48_phone_store_iphone_camera
49 massage - spa - therapist - room - massages 33 49_massage_spa_therapist_room
50 dog - dogs - hot dog - hot - beef 33 50_dog_dogs_hot dog_hot
51 dog - pet - dog food - treats - pets 32 51_dog_pet_dog food_treats
52 closed - location closed - open - closed good - business closed 29 52_closed_location closed_open_closed good
53 dentist - dr - dental - teeth - office 29 53_dentist_dr_dental_teeth
54 salad - lunch - sandwich - chicken - dressing 29 54_salad_lunch_sandwich_chicken
55 greek - greek food - pita - gyro - greek restaurant 27 55_greek_greek food_pita_gyro
56 waffles - lo - chicken waffles - chicken - lolo 27 56_waffles_lo_chicken waffles_chicken
57 car - wash - car wash - job - exterior 27 57_car_wash_car wash_job
58 gelato - angel sweet - angel - italy - flavors 27 58_gelato_angel sweet_angel_italy
59 wings - wing - love wings - wild wings - buffalo 26 59_wings_wing_love wings_wild wings
60 tea - boba - teas - drink - milk tea 25 60_tea_boba_teas_drink
61 food - service - great food - great - awesome food 25 61_food_service_great food_great
62 bagel - bagels - cream cheese - lox - cream 25 62_bagel_bagels_cream cheese_lox
63 bruschetta - postino - wine - postinos - bottle 24 63_bruschetta_postino_wine_postinos
64 review - stars - reviews - hotdog - mold 24 64_review_stars_reviews_hotdog
65 foods - fresh easy - trader - easy - grocery 22 65_foods_fresh easy_trader_easy
66 mongolian - mongolian bbq - yc - bowl - bbq 22 66_mongolian_mongolian bbq_yc_bowl
67 service - food - time - horrible - ordered 22 67_service_food_time_horrible
68 course - holes - courses - played - tee 21 68_course_holes_courses_played
69 dog - dogs - park - dog park - active 21 69_dog_dogs_park_dog park
70 books - book - library - bookstore - used books 21 70_books_book_library_bookstore
71 pita - pita jungle - jungle - hummus - lentil 20 71_pita_pita jungle_jungle_hummus
72 pasta - spaghetti - sauce - italian - bread 20 72_pasta_spaghetti_sauce_italian
73 store - office max - prices - max - office 20 73_store_office max_prices_max
74 expensive - good price - food - price - good food 19 74_expensive_good price_food_price
75 thrift - store - goodwill - thrift store - vintage 19 75_thrift_store_goodwill_thrift store
76 safeway - store - grocery - shopping - winco 19 76_safeway_store_grocery_shopping
77 beer - bar - asked - minutes - trout 18 77_beer_bar_asked_minutes
78 japanese - tokyo - japanese food - knife - knives 18 78_japanese_tokyo_japanese food_knife
79 irish - pub - irish pub - fish chips - guinness 16 79_irish_pub_irish pub_fish chips
80 works meh - friendly awesome - ing great - awesome intense - job super 16 80_works meh_friendly awesome_ing great_awesome intense
81 zia - record - cd - stinkweeds - music 15 81_zia_record_cd_stinkweeds
82 tires - tire - discount tire - discount - new tires 14 82_tires_tire_discount tire_discount
83 cheesesteak - wiz - cheesesteaks - forefathers - philly 14 83_cheesesteak_wiz_cheesesteaks_forefathers
84 korean - korean food - kimchi - bbq - dishes 14 84_korean_korean food_kimchi_bbq
85 buffet - buffets - sushi - hong - hong kong 13 85_buffet_buffets_sushi_hong
86 gyro - tzatziki - pita - gyros - meat 13 86_gyro_tzatziki_pita_gyros
87 classes - campus - school - teacher - students 13 87_classes_campus_school_teacher
88 romantic - love love - whinings excellent - whinings - live amazing 13 88_romantic_love love_whinings excellent_whinings
89 patio - service - excellent service - excellent - great service 12 89_patio_service_excellent service_excellent
90 staff - clean staff - clean - selection awesome - friendly 12 90_staff_clean staff_clean_selection awesome
91 lux - coffee - espresso - love space - surfing 12 91_lux_coffee_espresso_love space
92 wine - bottle - glass - bar - maybe 12 92_wine_bottle_glass_bar
93 sushi - roll - ra - sushi bar - seated 12 93_sushi_roll_ra_sushi bar
94 german - schnitzel - murphy - german food - haus 12 94_german_schnitzel_murphy_german food
95 ethiopian - lalibela - injera - watt - lentils 11 95_ethiopian_lalibela_injera_watt
96 store - items - michaels - susan - employee 11 96_store_items_michaels_susan

Training hyperparameters

  • calculate_probabilities: True
  • language: english
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: True
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.25.2
  • HDBSCAN: 0.8.36
  • UMAP: 0.5.6
  • Pandas: 2.0.3
  • Scikit-Learn: 1.2.2
  • Sentence-transformers: 3.0.0
  • Transformers: 4.41.1
  • Numba: 0.58.1
  • Plotly: 5.15.0
  • Python: 3.10.12
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.