Edit model card

Model Usage

import os
import numpy as np
from tensorflow.keras.preprocessing import image
from tensorflow.keras.models import load_model
from tensorflow.keras.applications.inception_v3 import preprocess_input
import tensorflow as tf


# Lista de clases
class_names = ['acanthoica', 'akashiwo', 'alexandrium', 'amoeba', 'amphidinium', 'amylax', 'apedinella', 'asterionellopsis', 'bacillaria', 'bacteriastrum', 'biddulphia', 'calciopappus', 'cerataulina', 'ceratium', 'chaetoceros', 'chrysochromulina', 'cochlodinium', 'corethron', 'corymbellus', 'coscinodiscus', 'cryptophyta', 'cylindrotheca', 'dactyliosolen', 'delphineis', 'dictyocha', 'dinobryon', 'dinophysis', 'ditylum', 'emiliania', 'ephemera', 'eucampia', 'euglena', 'gonyaulax', 'guinardia', 'gyrodinium', 'hemiaulus', 'heterocapsa', 'karenia', 'katodinium', 'kryptoperidinium', 'laboea', 'lauderia', 'leptocylindrus', 'licmophora', 'nanoneis', 'odontella', 'ophiaster', 'ostreopsis', 'oxytoxum', 'paralia', 'parvicorbicula', 'phaeocystis', 'pleuronema', 'pleurosigma', 'polykrikos', 'prorocentrum', 'proterythropsis', 'protoperidinium', 'pseudo-nitzschia', 'pseudochattonella', 'pyramimonas', 'rhabdolithes', 'rhizosolenia', 'scrippsiella', 'skeletonema', 'stephanopyxis', 'syracosphaera', 'thalassionema', 'thalassiosira', 'trichodesmium', 'vicicitus', 'warnowia']

def preprocess_image(image_path, target_size=(299, 299)):
    img = image.load_img(image_path, target_size=target_size)
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = preprocess_input(img_array)  # Usar la función de preprocesamiento de InceptionV3
    return img_array

# Ruta de la imagen que deseas procesar
image_path = '/your/image/path'
img_array = preprocess_image(image_path)

# Hacer la predicción
predictions = model.predict(img_array)[0]  # Obtener las probabilidades de la primera (y única) imagen

# Obtener el top 10 de predicciones
top_10_indices = predictions.argsort()[-10:][::-1]  # Ordenar índices por probabilidad (de mayor a menor)
top_10_classes = [class_names[i] for i in top_10_indices]
top_10_probabilities = predictions[top_10_indices]

# Mostrar el top 10 de clases con sus probabilidades
print("Top 10 predicciones:")
for i in range(10):
    print(f"{top_10_classes[i]}: {top_10_probabilities[i] * 100:.2f}%")
Downloads last month
79
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using Daniel00611/InceptionV3_72 2