metadata
language:
- en
license: apache-2.0
tags:
- bees
- bzz
- honey
- oprah winfrey
- llama-cpp
- gguf-my-repo
base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
datasets:
- BEE-spoke-data/bees-internal
metrics:
- accuracy
inference:
parameters:
max_new_tokens: 64
do_sample: true
renormalize_logits: true
repetition_penalty: 1.05
no_repeat_ngram_size: 6
temperature: 0.9
top_p: 0.95
epsilon_cutoff: 0.0008
widget:
- text: In beekeeping, the term "queen excluder" refers to
example_title: Queen Excluder
- text: One way to encourage a honey bee colony to produce more honey is by
example_title: Increasing Honey Production
- text: The lifecycle of a worker bee consists of several stages, starting with
example_title: Lifecycle of a Worker Bee
- text: Varroa destructor is a type of mite that
example_title: Varroa Destructor
- text: In the world of beekeeping, the acronym PPE stands for
example_title: Beekeeping PPE
- text: The term "robbing" in beekeeping refers to the act of
example_title: Robbing in Beekeeping
- text: |-
Question: What's the primary function of drone bees in a hive?
Answer:
example_title: Role of Drone Bees
- text: To harvest honey from a hive, beekeepers often use a device known as a
example_title: Honey Harvesting Device
- text: >-
Problem: You have a hive that produces 60 pounds of honey per year. You
decide to split the hive into two. Assuming each hive now produces at a
70% rate compared to before, how much honey will you get from both hives
next year?
To calculate
example_title: Beekeeping Math Problem
- text: In beekeeping, "swarming" is the process where
example_title: Swarming
pipeline_tag: text-generation
model-index:
- name: TinyLlama-3T-1.1bee
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 33.79
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/TinyLlama-3T-1.1bee
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 60.29
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/TinyLlama-3T-1.1bee
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.86
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/TinyLlama-3T-1.1bee
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 38.13
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/TinyLlama-3T-1.1bee
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.22
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/TinyLlama-3T-1.1bee
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.45
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=BEE-spoke-data/TinyLlama-3T-1.1bee
name: Open LLM Leaderboard
DavidAU/TinyLlama-3T-1.1bee-Q8_0-GGUF
This model was converted to GGUF format from BEE-spoke-data/TinyLlama-3T-1.1bee
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew.
brew install ggerganov/ggerganov/llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo DavidAU/TinyLlama-3T-1.1bee-Q8_0-GGUF --model tinyllama-3t-1.1bee.Q8_0.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo DavidAU/TinyLlama-3T-1.1bee-Q8_0-GGUF --model tinyllama-3t-1.1bee.Q8_0.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m tinyllama-3t-1.1bee.Q8_0.gguf -n 128