DunnBC22's picture
Update README.md
9d1e214
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: codebert-base-Password_Strength_Classifier
    results: []

codebert-base-Password_Strength_Classifier

This model is a fine-tuned version of microsoft/codebert-base.

It achieves the following results on the evaluation set:

  • Loss: 0.0077
  • Accuracy: 0.9975
  • F1
    • Weighted: 0.9975
    • Micro: 0.9975
    • Macro: 0.9963
  • Recall
    • Weighted: 0.9975
    • Micro: 0.9975
    • Macro: 0.9978
  • Precision
    • Weighted: 0.9975
    • Macro: 0.9948
    • Micro: 0.9975

Model description

The model classifies passwords as one of the following:

  1. Weak
  2. Medium
  3. Strong

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Password%20Strength%20Classification%20(MC)/CodeBERT-Base%20-%20Password_Classifier.ipynb

Intended uses & limitations

This is intended to show the possibilities. It is mainly limited by the input data.

Training and evaluation data

Dataset Source: https://www.kaggle.com/datasets/bhavikbb/password-strength-classifier-dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Weighted F1 Micro F1 Macro F1 Weighted Recall Micro Recall Macro Recall Weighted Precision Micro Precision Macro Precision
0.0438 1.0 8371 0.0112 0.9956 0.9956 0.9956 0.9935 0.9956 0.9956 0.9963 0.9957 0.9956 0.9908
0.0133 2.0 16742 0.0092 0.9966 0.9967 0.9966 0.9951 0.9966 0.9966 0.9966 0.9967 0.9966 0.9935
0.0067 3.0 25113 0.0077 0.9975 0.9975 0.9975 0.9963 0.9975 0.9975 0.9978 0.9975 0.9975 0.9948

Framework versions

  • Transformers 4.27.4
  • Pytorch 2.0.0
  • Datasets 2.11.0
  • Tokenizers 0.13.3