DunnBC22's picture
Update README.md
0f845fb
metadata
license: mit
tags:
  - generated_from_trainer
  - biology
  - medical
metrics:
  - bleu
  - rouge
  - meteor
model-index:
  - name: mbart-large-50-Biomedical_Dataset
    results: []
language:
  - en
  - it
pipeline_tag: translation

mbart-large-50-Biomedical_Dataset

This model is a fine-tuned version of facebook/mbart-large-50.

It achieves the following results on the evaluation set:

  • Training Loss: 1.0165
  • Epoch: 1.0
  • Step: 2636
  • Validation Loss: 0.9425
  • Bleu: 38.9893
  • Rouge Metrics:
    • Rouge1: 0.6826259612196924
    • Rouge2: 0.473675987811788
    • RougeL: 0.6586445010303293
    • RougeLsum: 0.6585487473231793
  • Meteor: 0.6299677745833094
  • Prediction lengths: 24.362727392855568

Model description

For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Machine%20Translation/Biomedical%20Translation%20(EN%20to%20IT)/Biomedical%20-%20Translation%20Project.ipynb

Intended uses & limitations

This model is intended to demonstrate my ability to solve a complex problem using technology.

Training and evaluation data

Dataset Source: https://huggingface.co/datasets/paolo-ruggirello/biomedical-dataset

Histogram of English Input Word Counts

English Input Lengths

Histogram of Italian Input Word Counts

Italian Input Lengths

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1

Training results*

Training Loss Epoch Step Validation Loss Bleu Rouge1 Rouge2 RougeL RougeLsum Meteor Prediction Lengths
1.0165 1.0 2636 0.9425 38.9893 0.6826 0.4737 0.6586 0.6585 0.6270 24.3627

Footnotes:

*: All results in this table are rounded to the nearest ten-thousandths of the decimal.

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3