DataVortex Models
Collection
21 items
β’
Updated
Research & Engineering | Product Management |
---|---|
Kwangseok Yang | Seunghyun Choi |
Jeongwon Choi | Hyoseok Choi |
It follows Alpaca (Chat) format.
E.g.
text = """\
### System:
λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€.
### User:
λνλ―Όκ΅μ μλλ μ΄λμΌ?
### Assistant:
λνλ―Όκ΅μ μλλ μμΈμ
λλ€.
### User:
μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?
"""
Task | 0-shot | 5-shot | 10-shot | 50-shot |
---|---|---|---|---|
kobest_boolq | 0.886844 | 0.917351 | 0.921621 | 0.919476 |
kobest_copa | 0.805514 | 0.856782 | 0.864773 | 0.87793 |
kobest_hellaswag | 0.505714 | 0.512116 | 0.50608 | 0.512187 |
kobest_sentineg | 0.357169 | 0.974811 | 0.987404 | 0.979848 |
Average | 0.63881 | 0.815265 | 0.81997 | 0.82236 |
Average | Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
---|---|---|---|---|---|
55.81 | 55.55 | 63.39 | 51.57 | 48.23 | 60.33 |
This model contains the chat_template instruction format.
You can use the code below.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.7")
tokenizer = AutoTokenizer.from_pretrained("Edentns/DataVortexS-10.7B-dpo-v1.7")
messages = [
{"role": "system", "content": "λΉμ μ μ¬λλ€μ΄ μ 보λ₯Ό μ°Ύμ μ μλλ‘ λμμ£Όλ μΈκ³΅μ§λ₯ λΉμμ
λλ€."},
{"role": "user", "content": "λνλ―Όκ΅μ μλλ μ΄λμΌ?"},
{"role": "assistant", "content": "λνλ―Όκ΅μ μλλ μμΈμ
λλ€."},
{"role": "user", "content": "μμΈ μΈκ΅¬λ μ΄ λͺ λͺ
μ΄μΌ?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
This model is licensed under the cc-by-nc-4.0. which allows others to share and adapt the model for non-commercial purposes.