Edit model card

BiggerWizardLM-2-7B-Extended

BiggerWizardLM-2-7B-Extended is a merge of the following models using LazyMergekit:

🧩 Configuration


  slices:
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 0
          - 4
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 3
          - 4
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 4
          - 8
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 7
          - 8
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 8
          - 12
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 11
          - 12
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 12
          - 16
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 15
          - 16
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 16
          - 20
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 19
          - 20
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 20
          - 24
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 23
          - 24
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 24
          - 28
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 27
          - 28
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 28
          - 32
  - sources:
      - model: Replete-AI/WizardLM-2-7b
        layer_range:
          - 31
          - 32
        parameters:
          scale:
            - filter: o_proj
              value: 0
            - filter: down_proj
              value: 0
            - value: 1
  merge_method: passthrough
  dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Gille/BiggerWizardLM-2-7B-Extended"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
9
Safetensors
Model size
8.99B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.