|
--- |
|
language: |
|
- zh |
|
license: apache-2.0 |
|
|
|
|
|
|
|
|
|
tags: |
|
- question-generation |
|
- qg |
|
- SQuAD |
|
- nlg |
|
- bart-base |
|
datasets: |
|
- chinesesquad |
|
metrics: |
|
- bleu |
|
- rouge |
|
- f1 |
|
- meteor |
|
- bleu_score |
|
--- |
|
|
|
# Randeng-BART-139M-QG-Chinese |
|
|
|
- Github: [Fengshenbang-LM](https://github.com/IDEA-CCNL/Fengshenbang-LM/tree/dev_yangqi/fengshen/examples/bart_qg) |
|
- Docs: [Fengshenbang-Docs](https://fengshenbang-doc.readthedocs.io/) |
|
|
|
## 简介 Brief Introduction |
|
|
|
善于处理问题生成任务的中文版 BART-base 模型。 |
|
|
|
Good at solving question generation tasks Bart-base Model (Chinese version). |
|
|
|
## 模型分类 Model Taxonomy |
|
|
|
| 需求 Demand | 任务 Task | 系列 Series | 模型 Model | 参数 Parameter | 额外 Extra | |
|
| :----: | :----: | :----: | :----: | :----: | :----: | |
|
| 通用 General | 自然语言转换 NLT | 燃灯 Randeng | BART | 139M | 问题生成任务-中文 QuestionGeneration-Chinese | |
|
|
|
|
|
## 模型信息 Model Information |
|
|
|
基于[IDEA-CCNL/Randeng-BART-139M](https://huggingface.co/IDEA-CCNL/Randeng-BART-139M),我们在 [ChineseSQuAD](https://github.com/pluto-junzeng/ChineseSquad) 数据集上微调了问题生成任务版本。该数据集翻译了部分SQuAD数据集,包含约 67k 有答案的训练样本。 |
|
|
|
Based on [IDEA-CCNL/Randeng-BART-139M](https://huggingface.co/IDEA-CCNL/Randeng-BART-139M), we fine-tuned a question generation version on [ChineseSQuAD](https://github.com/pluto-junzeng/ChineseSquad) datasets. The dataset is translated from SQuAD 2.0, with around 67k samples with answer. |
|
|
|
### 下游效果 Performance |
|
| Dataset | Size | BLEU-4 | METEOR | ROUGE-L| |
|
| ------------ | ----- | -------- |--------- | ---------- | |
|
| ChineseSQuAD | 139M | 22.17 | 40.38 | 38.17 | |
|
|
|
## 使用 Usage |
|
|
|
```python |
|
from transformers import AutoTokenizer, BartForConditionalGeneration |
|
tokenizer = AutoTokenizer.from_pretrained("IDEA-CCNL/Randeng-BART-139M-QG-Chinese",additional_special_tokens=["<ans>"]) |
|
model = BartForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-BART-139M-QG-Chinese") |
|
|
|
context = "知识:1939年9月1日德国入侵波兰后,第二次世界大战开始,华沙一直被保卫到9月27日。波兰中部,包括华沙,都在德国纳粹殖民地政府总政府的统治下。所有的高等教育机构都立即关闭,华沙的犹太人口——几十万,约占城市的 <ans> ——全部涌入华沙的贫民区。回答:30%" |
|
inputs = tokenizer.encode_plus( |
|
context, |
|
max_length=448, |
|
padding="max_length", |
|
truncation=True, |
|
return_tensors='pt' |
|
) |
|
out = model.generate( |
|
input_ids=inputs['input_ids'], |
|
attention_mask=inputs['attention_mask'], |
|
do_sample=True, |
|
num_beams=5, |
|
max_length=64, |
|
top_p = 0.9, |
|
) |
|
print(pred = tokenizer.batch_decode(out,clean_up_tokenization_spaces=True, skip_special_tokens=True)[0]) |
|
# 问题:华沙的犹太人口占城市的百分之多少? |
|
``` |
|
|
|
|
|
## 引用 Citation |
|
|
|
如果您在您的工作中使用了我们的模型,可以引用我们的[论文](https://arxiv.org/abs/2210.08590): |
|
|
|
If you are using the resource for your work, please cite the our [paper](https://arxiv.org/abs/2210.08590): |
|
|
|
```text |
|
@article{unimc, |
|
author = {Ping Yang and |
|
Junjie Wang and |
|
Ruyi Gan and |
|
Xinyu Zhu and |
|
Lin Zhang and |
|
Ziwei Wu and |
|
Xinyu Gao and |
|
Jiaxing Zhang and |
|
Tetsuya Sakai}, |
|
title = {Zero-Shot Learners for Natural Language Understanding via a Unified Multiple Choice Perspective}, |
|
journal = {CoRR}, |
|
volume = {abs/2210.08590}, |
|
year = {2022} |
|
} |
|
``` |
|
|
|
也可以引用我们的[网站](https://github.com/IDEA-CCNL/Fengshenbang-LM/): |
|
|
|
You can also cite our [website](https://github.com/IDEA-CCNL/Fengshenbang-LM/): |
|
|
|
```text |
|
@misc{Fengshenbang-LM, |
|
title={Fengshenbang-LM}, |
|
author={IDEA-CCNL}, |
|
year={2021}, |
|
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}}, |
|
} |
|
``` |
|
|