metadata
language:
- en
license: apache-2.0
tags:
- multiple-choice
- int8
- Intel® Neural Compressor
- PostTrainingStatic
datasets:
- swag
metrics:
- accuracy
model-index:
- name: bert-base-uncased-finetuned-swag-int8-static
results:
- task:
name: Multiple-choice
type: multiple-choice
dataset:
name: Swag
type: swag
metrics:
- name: Accuracy
type: accuracy
value: 0.7838148474693298
INT8 bert-base-uncased-finetuned-swag
Post-training static quantization
This is an INT8 PyTorch model quantized with huggingface/optimum-intel through the usage of Intel® Neural Compressor. The original fp32 model comes from the fine-tuned model thyagosme/bert-base-uncased-finetuned-swag.
The calibration dataloader is the train dataloader. The default calibration sampling size 100 isn't divisible exactly by batch size 8, so the real sampling size is 104.
The linear modules bert.encoder.layer.2.output.dense, bert.encoder.layer.5.intermediate.dense, bert.encoder.layer.9.output.dense, bert.encoder.layer.10.output.dense fall back to fp32 to meet the 1% relative accuracy loss.
Test result
INT8 | FP32 | |
---|---|---|
Accuracy (eval-accuracy) | 0.7838 | 0.7915 |
Model size (MB) | 133 | 418 |
Load with optimum:
from optimum.intel import INCModelForMultipleChoice
model_id = "Intel/bert-base-uncased-finetuned-swag-int8-static"
int8_model = INCModelForMultipleChoice.from_pretrained(model_id)