|
--- |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- Qwen/Qwen1.5-0.5B |
|
--- |
|
|
|
# TinyQwex-4x620M-MoE |
|
|
|
TinyQwex-4x620M-MoE is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) |
|
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) |
|
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) |
|
* [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) |
|
|
|
## 🧩 Configuration |
|
|
|
```yamlbase_model: Qwen/Qwen1.5-0.5B |
|
experts: |
|
- source_model: Qwen/Qwen1.5-0.5B |
|
positive_prompts: |
|
- "reasoning" |
|
- "logic" |
|
- "problem-solving" |
|
- "critical thinking" |
|
- "analysis" |
|
- "synthesis" |
|
- "evaluation" |
|
- "decision-making" |
|
- "judgment" |
|
- "insight" |
|
|
|
- source_model: Qwen/Qwen1.5-0.5B |
|
positive_prompts: |
|
- "program" |
|
- "software" |
|
- "develop" |
|
- "build" |
|
- "create" |
|
- "design" |
|
- "implement" |
|
- "debug" |
|
- "test" |
|
- "code" |
|
- "python" |
|
- "programming" |
|
- "algorithm" |
|
- "function" |
|
|
|
- source_model: Qwen/Qwen1.5-0.5B |
|
positive_prompts: |
|
- "storytelling" |
|
- "narrative" |
|
- "fiction" |
|
- "creative writing" |
|
- "plot" |
|
- "characters" |
|
- "dialogue" |
|
- "setting" |
|
- "emotion" |
|
- "imagination" |
|
- "scene" |
|
- "story" |
|
- "character" |
|
|
|
- source_model: Qwen/Qwen1.5-0.5B |
|
positive_prompts: |
|
- "chat" |
|
- "conversation" |
|
- "dialogue" |
|
- "discuss" |
|
- "ask questions" |
|
- "share thoughts" |
|
- "explore ideas" |
|
- "learn new things" |
|
- "personal assistant" |
|
- "friendly helper" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Isotonic/TinyQwex-4x620M-MoE" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |