JanLilan's picture
Update README.md
37c3f66
metadata
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert_finetuned-finetuned-gtzan
    results: []

distilhubert_finetuned-finetuned-gtzan

This model is a fine-tuned version of JanLilan/distilhubert_finetuned-distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6325
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8777 0.99 33 0.4485 0.8333
0.6913 2.0 67 1.0592 0.7
0.5494 2.99 100 0.6168 0.7667
0.3589 4.0 134 0.7820 0.7833
0.2049 4.99 167 0.9303 0.7833
0.1663 6.0 201 0.3570 0.9
0.0446 6.99 234 0.5636 0.8667
0.0313 8.0 268 0.6592 0.85
0.0007 8.99 301 0.4721 0.8833
0.0004 9.85 330 0.6325 0.9

Check it out colab

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3