test_model / README.md
KYUNGHYUN9's picture
Upload 12 files
37dfde2 verified
metadata
base_model: jhgan/ko-sroberta-multitask
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:574417
  - loss:MultipleNegativesRankingLoss
  - loss:CosineSimilarityLoss
widget:
  - source_sentence: 파타키는 아브라함의 결정을 칭찬했고 리파 회장 리차드 케셀은 케이블이 영구적으로 가동되어야 한다고 말했다.
    sentences:
      - 이스라엘과 하마스 '일시적인 휴전을 받아들이다'
      - 리파 회장 리차드 케셀은 "우리가 보기에 케이블이 사용될 수 있다" 말했다.
      - 하지만 그들은 그들의 유권자들에게 책임이 있다.
  - source_sentence: 돛이   달린 배가  위를 항해하고 있다.
    sentences:
      - 돛단배가  위를 항해하고 있다.
      - 보스턴 마라톤 결승선에서 발생한  번의 폭발 보고
      - 레바논의 헤즈볼라 거점
  - source_sentence: 딱딱한 모자를  남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.
    sentences:
      -  남자가 트럭을 보고 있다.
      -  명은 빨간 스웨터를 입고 다른  명은 하얀 스웨터를 입은  소년은 덤불 근처의 시멘트 블록에 앉아 있었다.
      - 남자가 자고 있다.
  - source_sentence: 벽돌 건물  발코니 뒤에  사람이  있다.
    sentences:
      -  사람은 경찰관이다.
      - 그들은 거실에 앉는다
      -  단체는 건물 밖에 있다
  - source_sentence: 남자가 노래를 부르는 동안  남자가 악기를 연주한다.
    sentences:
      -  번째 남자가 악기를 연주하는 동안  남자가 노래를 부른다.
      - 베이 근처.
      - 3분의 1 노래하는 동안  남자가 악기를 연주한다.
model-index:
  - name: SentenceTransformer based on jhgan/ko-sroberta-multitask
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8668233431675435
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.870259876274258
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8619838546671155
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8684094795174834
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8623159159300648
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8686012195776042
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8474110764249254
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8469132619978514
            name: Spearman Dot
          - type: pearson_max
            value: 0.8668233431675435
            name: Pearson Max
          - type: spearman_max
            value: 0.870259876274258
            name: Spearman Max

SentenceTransformer based on jhgan/ko-sroberta-multitask

This is a sentence-transformers model finetuned from jhgan/ko-sroberta-multitask. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: jhgan/ko-sroberta-multitask
  • Maximum Sequence Length: 128 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    '남자가 노래를 부르는 동안 두 남자가 악기를 연주한다.',
    '3분의 1이 노래하는 동안 두 남자가 악기를 연주한다.',
    '세 번째 남자가 악기를 연주하는 동안 두 남자가 노래를 부른다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8668
spearman_cosine 0.8703
pearson_manhattan 0.862
spearman_manhattan 0.8684
pearson_euclidean 0.8623
spearman_euclidean 0.8686
pearson_dot 0.8474
spearman_dot 0.8469
pearson_max 0.8668
spearman_max 0.8703

Training Details

Training Datasets

Unnamed Dataset

  • Size: 568,640 training samples
  • Columns: sentence_0, sentence_1, and sentence_2
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 sentence_2
    type string string string
    details
    • min: 4 tokens
    • mean: 19.21 tokens
    • max: 128 tokens
    • min: 3 tokens
    • mean: 18.31 tokens
    • max: 93 tokens
    • min: 4 tokens
    • mean: 14.57 tokens
    • max: 54 tokens
  • Samples:
    sentence_0 sentence_1 sentence_2
    발생 부하가 함께 5% 적습니다. 발생 부하의 5% 감소와 함께 11. 발생 부하가 5% 증가합니다.
    어떤 행사를 위해 음식과 옷을 배급하는 여성들. 여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다. 여자들이 사막에서 오토바이를 운전하고 있다.
    어린 아이들은 그 지식을 얻을 필요가 있다. 응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아. 젊은 사람들은 배울 필요가 없다.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Unnamed Dataset

  • Size: 5,777 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 17.16 tokens
    • max: 66 tokens
    • min: 3 tokens
    • mean: 17.11 tokens
    • max: 64 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    시는 드램 시장이 2003년에 2.9% 성장하여 157억 달러, 2004년에는 43% 성장하여 225억 달러가 될 것으로 예상하고 있다고 말했습니다. 미국 시장은 2003년에 2.1퍼센트가 감소한 30.6억 달러로, 그리고 나서 2004년에 15.7퍼센트가 증가하여 354억 달러로 성장할 것이다. 0.24
    오사마 빈 라덴 부인들 수감 인도에서 촬영될 오사마 빈 라덴 영화 0.16
    파키스탄 전투기, '탈리반 은신처' 폭탄 터뜨리기 파키스탄은 시리아 측에 무기 공급을 중단하기를 원한다. 0.32
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • num_train_epochs: 5
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss sts-dev_spearman_max
0.3458 500 0.1504 -
0.6916 1000 0.1662 0.8660
1.0007 1447 - 0.8678
1.0367 1500 0.1575 -
1.3824 2000 0.0539 0.8590
1.7282 2500 0.0406 -
2.0007 2894 - 0.8703

Framework Versions

  • Python: 3.11.9
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.2.2+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.20.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}