Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3518
  • Accuracy: {'accuracy': 0.892}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.5531 {'accuracy': 0.844}
0.4257 2.0 500 0.3913 {'accuracy': 0.888}
0.4257 3.0 750 0.6203 {'accuracy': 0.865}
0.2247 4.0 1000 0.6630 {'accuracy': 0.884}
0.2247 5.0 1250 0.8218 {'accuracy': 0.885}
0.0802 6.0 1500 0.9760 {'accuracy': 0.866}
0.0802 7.0 1750 0.9308 {'accuracy': 0.882}
0.0458 8.0 2000 1.0010 {'accuracy': 0.884}
0.0458 9.0 2250 1.2157 {'accuracy': 0.884}
0.0263 10.0 2500 1.2556 {'accuracy': 0.89}
0.0263 11.0 2750 1.0911 {'accuracy': 0.892}
0.0244 12.0 3000 1.2507 {'accuracy': 0.884}
0.0244 13.0 3250 1.3437 {'accuracy': 0.889}
0.0239 14.0 3500 1.1973 {'accuracy': 0.893}
0.0239 15.0 3750 1.1784 {'accuracy': 0.894}
0.0006 16.0 4000 1.2430 {'accuracy': 0.892}
0.0006 17.0 4250 1.3177 {'accuracy': 0.888}
0.0018 18.0 4500 1.3294 {'accuracy': 0.893}
0.0018 19.0 4750 1.3637 {'accuracy': 0.891}
0.0025 20.0 5000 1.3518 {'accuracy': 0.892}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for KhuyenLE/distilbert-base-uncased-lora-text-classification

Adapter
(191)
this model