NeuralArjuna-7B-DT / README.md
Kukedlc's picture
Update README.md
7fa1bce verified
|
raw
history blame
2.38 kB
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - yam-peleg/Experiment26-7B
  - Gille/StrangeMerges_32-7B-slerp
  - MSL7/INEX12-7b
  - automerger/YamShadow-7B
  - Kukedlc/NeuralSirKrishna-7b
base_model:
  - yam-peleg/Experiment26-7B
  - Gille/StrangeMerges_32-7B-slerp
  - MSL7/INEX12-7b
  - automerger/YamShadow-7B
  - Kukedlc/NeuralSirKrishna-7b

NeuralArjuna-7B-DT

image/png

NeuralArjuna-7B-DT is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: liminerity/M7-7b
    # no parameters necessary for base model
  - model: yam-peleg/Experiment26-7B 
    parameters:
      weight: 0.2
      density: 0.66
  - model: Gille/StrangeMerges_32-7B-slerp
    parameters:
      weight: 0.2
      density: 0.55
  - model: MSL7/INEX12-7b 
    parameters:
      weight: 0.2
      density: 0.33
  - model: automerger/YamShadow-7B
    parameters:
      weight: 0.2
      density: 0.66
  - model: Kukedlc/NeuralSirKrishna-7b
    parameters:
      weight: 0.2
      density: 0.66
merge_method: dare_ties
base_model: liminerity/M7-7b

parameters:
  int8_mask: true
  normalize: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/NeuralArjuna-7B-DT"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])