metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
- recall
- f1
- precision
model-index:
- name: vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8518518518518519
- name: Recall
type: recall
value: 0.8518518518518519
- name: F1
type: f1
value: 0.8508141812977819
- name: Precision
type: precision
value: 0.8576385720576808
vit-base-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask-new-parameter
This model is a fine-tuned version of google/vit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.3278
- Accuracy: 0.8519
- Recall: 0.8519
- F1: 0.8508
- Precision: 0.8576
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision |
---|---|---|---|---|---|---|---|
No log | 1.0 | 1175 | 0.5572 | 0.8076 | 0.8076 | 0.7937 | 0.8043 |
No log | 2.0 | 2350 | 0.4673 | 0.8284 | 0.8284 | 0.8271 | 0.8347 |
No log | 3.0 | 3525 | 0.4109 | 0.8344 | 0.8344 | 0.8301 | 0.8367 |
No log | 4.0 | 4700 | 0.3984 | 0.8382 | 0.8382 | 0.8339 | 0.8375 |
No log | 5.0 | 5875 | 0.3886 | 0.8412 | 0.8412 | 0.8398 | 0.8467 |
No log | 6.0 | 7050 | 0.3520 | 0.8493 | 0.8493 | 0.8481 | 0.8519 |
No log | 7.0 | 8225 | 0.4229 | 0.8416 | 0.8416 | 0.8399 | 0.8512 |
No log | 8.0 | 9400 | 0.3140 | 0.8612 | 0.8612 | 0.8600 | 0.8656 |
No log | 9.0 | 10575 | 0.3399 | 0.8421 | 0.8421 | 0.8403 | 0.8464 |
0.4263 | 10.0 | 11750 | 0.3399 | 0.8476 | 0.8476 | 0.8468 | 0.8536 |
Framework versions
- Transformers 4.40.1
- Pytorch 2.2.0a0+81ea7a4
- Datasets 2.19.0
- Tokenizers 0.19.1