Edit model card

vit-large-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask

This model is a fine-tuned version of google/vit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3294
  • Accuracy: 0.8421
  • Recall: 0.8421
  • F1: 0.8405
  • Precision: 0.8450

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Recall F1 Precision
0.5269 0.9974 293 0.5393 0.8029 0.8029 0.7943 0.7941
0.4275 1.9983 587 0.4630 0.8182 0.8182 0.8103 0.8255
0.4681 2.9991 881 0.4346 0.8408 0.8408 0.8358 0.8557
0.3721 4.0 1175 0.3631 0.8450 0.8450 0.8417 0.8541
0.4054 4.9974 1468 0.3536 0.8455 0.8455 0.8445 0.8491
0.2519 5.9983 1762 0.3747 0.8421 0.8421 0.8391 0.8549
0.2923 6.9991 2056 0.3664 0.8395 0.8395 0.8402 0.8467
0.2288 8.0 2350 0.3496 0.8382 0.8382 0.8377 0.8442
0.1642 8.9974 2643 0.3455 0.8463 0.8463 0.8444 0.8468
0.1783 9.9745 2930 0.3468 0.8476 0.8476 0.8463 0.8490

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.2.0a0+81ea7a4
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
303M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kushagra07/vit-large-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask

Finetuned
(16)
this model

Evaluation results