flydust's picture
End of training
6c26d0b verified
|
raw
history blame
3.27 kB
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: Llama-3-8B-WizardLM-196K
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: Leon-Leee/Wizardlm_Evol_Instruct_v2_196K_backuped
type: sharegpt
conversation: llama3
dataset_prepared_path: last_run_prepared
val_set_size: 0.001
output_dir: ./out_Llama-8B-WizardLM-196k
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: SynDa
wandb_entity:
wandb_watch:
wandb_name: Llama-3-8B-WizardLM-196k
wandb_log_model:
hub_model_id: SynDa/Llama-3-8B-WizardLM-196K
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 3
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# Llama-3-8B-WizardLM-196K
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6077
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.7323 | 0.0036 | 1 | 1.0826 |
| 0.5934 | 0.3344 | 93 | 0.6450 |
| 0.5497 | 0.6688 | 186 | 0.6192 |
| 0.5295 | 1.0031 | 279 | 0.6059 |
| 0.4664 | 1.3236 | 372 | 0.6103 |
| 0.4729 | 1.6580 | 465 | 0.6077 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1