flydust's picture
End of training
c95a9bb verified
|
raw
history blame
2.76 kB
metadata
base_model: Magpie-Align/Llama-3.1-8B-Magpie-Mix-300KMT-150KR
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - flydust/llama3-ultrafeedback-armorm-2
model-index:
  - name: Llama-3.1-8B-Magpie-Pro-MTR-UltraDPO-1
    results: []

Visualize in Weights & Biases

Llama-3.1-8B-Magpie-Pro-MTR-UltraDPO-1

This model is a fine-tuned version of Magpie-Align/Llama-3.1-8B-Magpie-Mix-300KMT-150KR on the flydust/llama3-ultrafeedback-armorm-2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3290
  • Rewards/chosen: -4.8185
  • Rewards/rejected: -6.6901
  • Rewards/accuracies: 0.8952
  • Rewards/margins: 1.8716
  • Logps/rejected: -867.8638
  • Logps/chosen: -686.8736
  • Logits/rejected: -0.5907
  • Logits/chosen: -0.5749

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 256
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.4439 0.4275 100 0.4168 -4.9964 -6.3086 0.8145 1.3123 -829.7151 -704.6570 -0.5150 -0.5001
0.343 0.8549 200 0.3298 -4.9310 -6.7966 0.8952 1.8655 -878.5105 -698.1248 -0.5776 -0.5622

Framework versions

  • Transformers 4.43.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1