π Llama-3
Collection
My experiments with Llama-3 models
β’
61 items
β’
Updated
β’
22
This model was developed based on MaziyarPanahi/Llama-3-8B-Instruct-v0.4
model.
All GGUF models are available here: MaziyarPanahi/Llama-3-8B-Instruct-v0.8-GGUF
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 73.20 |
AI2 Reasoning Challenge (25-Shot) | 71.67 |
HellaSwag (10-Shot) | 87.77 |
MMLU (5-Shot) | 68.30 |
TruthfulQA (0-shot) | 63.90 |
Winogrande (5-shot) | 79.08 |
GSM8k (5-shot) | 68.46 |
MaziyarPanahi/Llama-3-8B-Instruct-v0.8
is the 5th best-performing 8B model on the Open LLM Leaderboard. (03/06/2024).
Leaderboard 2.0:
Metric | Value |
---|---|
Avg. | 26.75 |
IFEval (0-Shot) | 75.12 |
BBH (3-Shot) | 28.27 |
MATH Lvl 5 (4-Shot) | 7.10 |
GPQA (0-shot) | 7.38 |
MuSR (0-shot) | 10.92 |
MMLU-PRO (5-shot) | 31.68 |
This model uses ChatML
prompt template:
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
You can use this model by using MaziyarPanahi/Llama-3-8B-Instruct-v0.8
as the model name in Hugging Face's
transformers library.
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/Llama-3-8B-Instruct-v0.8"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
pipeline = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
model_kwargs={"torch_dtype": torch.bfloat16},
streamer=streamer
)
# Then you can use the pipeline to generate text.
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=512,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.95,
)
print(outputs[0]["generated_text"][len(prompt):])
Base model
meta-llama/Meta-Llama-3-8B-Instruct