Edit model card

MaziyarPanahi/mathstral-7B-v0.1-GGUF

Description

MaziyarPanahi/mathstral-7B-v0.1-GGUF contains GGUF format model files for mistralai/mathstral-7B-v0.1.

About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

Here is an incomplete list of clients and libraries that are known to support GGUF:

  • llama.cpp. The source project for GGUF. Offers a CLI and a server option.
  • llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
  • LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
  • text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
  • KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
  • GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
  • LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
  • Faraday.dev, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
  • candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
  • ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.

Special thanks

🙏 Special thanks to Georgi Gerganov and the whole team working on llama.cpp for making all of this possible.


Original README

Model Card for Mathstral-7B-v0.1

Mathstral 7B is a model specializing in mathematical and scientific tasks, based on Mistral 7B. You can read more in the official blog post.

Installation

It is recommended to use mistralai/mathstral-7B-v0.1 with mistral-inference

pip install mistral_inference>=1.2.0

Download

from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'mathstral-7B-v0.1')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/mathstral-7B-v0.1", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)

Chat

After installing mistral_inference, a mistral-demo CLI command should be available in your environment.

mistral-chat $HOME/mistral_models/mathstral-7B-v0.1 --instruct --max_tokens 256

You can then start chatting with the model, e.g. prompt it with something like:

"Albert likes to surf every week. Each surfing session lasts for 4 hours and costs $20 per hour. How much would Albert spend in 5 weeks?"

Evaluation

We evaluate Mathstral 7B and open-weight models of the similar size on industry-standard benchmarks.

Benchmarks MATH GSM8K (8-shot) Odyssey Math maj@16 GRE Math maj@16 AMC 2023 maj@16 AIME 2024 maj@16
Mathstral 7B 56.6 77.1 37.2 56.9 42.4 2/30
DeepSeek Math 7B 44.4 80.6 27.6 44.6 28.0 0/30
Llama3 8B 28.4 75.4 24.0 26.2 34.4 0/30
GLM4 9B 50.2 48.8 18.9 46.2 36.0 1/30
QWen2 7B 56.8 32.7 24.8 58.5 35.2 2/30
Gemma2 9B 48.3 69.5 18.6 52.3 31.2 1/30

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall

Downloads last month
1,036,011
GGUF
Model size
7.25B params
Architecture
llama

1-bit

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for MaziyarPanahi/mathstral-7B-v0.1-GGUF

Quantized
(21)
this model

Collections including MaziyarPanahi/mathstral-7B-v0.1-GGUF