|
|
|
from transformers import AutoImageProcessor, AutoModelForImageClassification, TrainingArguments, Trainer |
|
from sklearn.preprocessing import LabelEncoder, OneHotEncoder |
|
import numpy as np |
|
import pandas as pd |
|
from datasets import load_dataset, load_from_disk |
|
import torch |
|
from joblib import cpu_count |
|
from fire import Fire |
|
|
|
def get_feature_function(preprocessor, encoder): |
|
def feature_extraction_function(examples): |
|
data = {} |
|
data["pixel_values"] = preprocessor(examples["image"]).pixel_values |
|
|
|
data['label'] = np.eye(len(encoder.classes_))[encoder.transform(examples['product_subcategory_name'])] |
|
return data |
|
|
|
return feature_extraction_function |
|
|
|
|
|
def train( |
|
dataset_id, |
|
hub_model_id, |
|
model_id = 'facebook/convnextv2-atto-1k-224', |
|
run_id = 'convextv2-atto-dataset', |
|
logging_steps = 100 |
|
) |
|
dataset = load_dataset(dataset_id) |
|
preprocessor = AutoImageProcessor.from_pretrained(model_id) |
|
|
|
|
|
labels = np.unique(dataset['train']['product_subcategory_name']) |
|
encoder = LabelEncoder().fit(y=labels) |
|
|
|
model = AutoModelForImageClassification.from_pretrained(model_id, |
|
ignore_mismatched_sizes=True, |
|
num_labels=len(encoder.classes_), |
|
id2label={i: label for i, label in enumerate(encoder.classes_)}, |
|
label2id={label: i for i, label in enumerate(encoder.classes_)} |
|
) |
|
|
|
dataset.set_transform(get_feature_function(preprocessor, encoder)) |
|
|
|
training_args = TrainingArguments( |
|
output_dir=f"results/{run_id}", |
|
remove_unused_columns=False, |
|
learning_rate=5e-5, |
|
per_device_train_batch_size=32, |
|
gradient_accumulation_steps=4, |
|
per_device_eval_batch_size=16, |
|
num_train_epochs=3, |
|
warmup_ratio=0.1, |
|
report_to=['tensorboard'], |
|
run_name=run_id, |
|
logging_steps=logging_steps, |
|
eval_steps=logging_steps, |
|
save_steps=logging_steps, |
|
save_total_limit=1, |
|
save_strategy="steps", |
|
evaluation_strategy="steps", |
|
skip_memory_metrics=False, |
|
logging_first_step=True, |
|
push_to_hub=True, |
|
hub_model_id=hub_model_id, |
|
hub_private_repo=True, |
|
hub_strategy="every_save", |
|
save_safetensors=True, |
|
|
|
|
|
dataloader_num_workers=cpu_count()//4, |
|
dataloader_pin_memory=True |
|
) |
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=dataset["train"], |
|
eval_dataset=dataset["test"] |
|
) |
|
|
|
trainer.train() |
|
|
|
|
|
if __name__ == '__main__': |
|
Fire(train) |